Hadoop02【架构分析】

=======================================================================

Hadoop2.0即第二代Hadoop,指的是版本为Apache Hadoop 0.23.x、2.x或者CDH4系列的Hadoop,内核主要由HDFS、MapReduce和YARN三个系统组成,其中YARN是一个资源管理系统,负责集群资源管理和调度,MapReduce则是运行在YARN上的离线处理框架,它与Hadoop 1.0中的MapReduce在编程模型(新旧API)和数据处理引擎(MapTask和ReduceTask)两个方面是相同的。

在这里插入图片描述

两者区别

==================================================================

1.从整体架构上分析


Hadoop1.0由分布式存储系统HDFS和分布式计算框架MapReduce组成,其中HDFS由一个NameNode和多个DateNode组成,MapReduce由一个JobTracker和多个TaskTracker组成。

Hadoop2.0为克服Hadoop1.0中的不足进行了下面改进:

  1. 针对Hadoop1.0单NameNode制约HDFS的扩展性问题,提出HDFS Federation,它让多个NameNode分管不同的目录进而实现访问隔离和横向扩展,同时彻底解决了NameNode单点故障问题;

  2. 针对Hadoop1.0中的MapReduce在扩展性和多框架支持等方面的不足,它将JobTracker中的资源管理和作业控制分开,分别由ResourceManager(负责所有应用程序的资源分配)和ApplicationMaster(负责管理一个应用程序)实现,即引入了资源管理框架Yarn。

  3. Yarn作为Hadoop2.0中的资源管理系统,它是一个通用的资源管理模块,可为各类应用程序进行资源管理和调度,不仅限于MapReduce一种框架,也可以为其他框架使用,如Tez、Spark、Storm等

2.从MapReduce框架分析


MapReduce1.0

MapReduce1.0计算框架主要由三部分组成:编程模型、数据处理引擎和运行时环境。

| 组成 | 说明 |

| — | :-- |

| 编程模型 | Map和Reduce两个阶段. |

| 数据处理引擎 | 由MapTask和ReduceTask组成 |

| 运行时环境 | 由一个JobTracker和若干个TaskTracker两类服务组成 |

基本编程模型是将问题抽象成Map和Reduce两个阶段。Map阶段将输入的数据解析成key/value,迭代调用map()函数处理后,再以key/value的形式输出到本地目录,Reduce阶段将key相同的value进行规约处理,并将最终结果写到HDFS上。

数据处理引擎由MapTask和ReduceTask组成,分别负责Map阶段逻辑和Reduce阶段的逻辑处理;

运行时环境由一个JobTracker和若干个TaskTracker两类服务组成,其中JobTracker负责资源管理和所有作业的控制,TaskTracker负责接收来自JobTracker的命令并执行它。

在这里插入图片描述

MapReducer2.0

MapReducer2.0具有与1.0相同的编程模型和数据处理引擎,唯一不同的是运行时环境。MRv2是在MRv1基础上经加工之后,运行于资源管理框架Yarn之上的计算框架MapReduce。它的运行时环境不再由JobTracker和TaskTracker等服务组成,而是变为通用资源管理系统Yarn和作业控制进程ApplicationMaster,其中Yarn负责资源管理的调度而ApplicationMaster负责作业的管理。
在这里插入图片描述
小结:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值