题目描述
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将 1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为 12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。
输入
输入文件fruit.in包括两行,第一行是一个整数n(1 <= n <= 30000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1 <= ai <= 20000)是第i种果子的数目。
输出
输出文件fruit.out包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于231。
样例输入
10
3 5 1 7 6 4 2 5 4 1
样例输出
120
分析:每次选择最小的两个数合并,得到的结果继续合并,直到剩下一个数。实际上就是构建一棵哈夫曼树。可以用堆模拟这个合并又加入的过程。
#include<algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <string>
#include <vector>
#include <cstdio>
#include <queue>
#include <stack>
#include <ctime>
#include <cmath>
#include <map>
#include <set>
#define INF 0xffffffff
#define db1(x) cout<<#x<<"="<<(x)<<endl
#define db2(x,y) cout<<#x<<"="<<(x)<<", "<<#y<<"="<<(y)<<endl
#define db3(x,y,z) cout<<#x<<"="<<(x)<<", "<<#y<<"="<<(y)<<", "<<#z<<"="<<(z)<<endl
#define db4(x,y,z,r) cout<<#x<<"="<<(x)<<", "<<#y<<"="<<(y)<<", "<<#z<<"="<<(z)<<", "<<#r<<"="<<(r)<<endl
#define db5(x,y,z,r,w) cout<<#x<<"="<<(x)<<", "<<#y<<"="<<(y)<<", "<<#z<<"="<<(z)<<", "<<#r<<"="<<(r)<<", "<<#w<<"="<<(w)<<endl
using namespace std;
priority_queue<long long,vector<long long>,greater<long long>>q;
int main(void)
{
#ifdef test
freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
clock_t start=clock();
#endif //test
int n;scanf("%d",&n);
long long temp,x,y,ans=0;
for(int i=0;i<n;++i)
{
scanf("%lld",&temp);
q.push(temp);
}
while(q.size()>1)
{
x=q.top(),q.pop(),y=q.top(),q.pop(),q.push(x+y),ans+=x+y;
}
printf("%lld\n",ans);
#ifdef test
clockid_t end=clock();
double endtime=(double)(end-start)/CLOCKS_PER_SEC;
printf("\n\n\n\n\n");
cout<<"Total time:"<<endtime<<"s"<<endl; //s为单位
cout<<"Total time:"<<endtime*1000<<"ms"<<endl; //ms为单位
#endif //test
return 0;
}