1. 项目简介
A032-DeepCross项目是一个基于深度学习的推荐算法实现,旨在解决个性化推荐问题。随着互联网平台上信息和内容的爆炸式增长,用户面临着信息过载的困境,如何为用户提供高效、精准的推荐成为了关键。该项目背景基于现代推荐系统的发展,利用用户行为数据和内容特征,来生成符合用户偏好的推荐结果。项目使用的核心模型是DeepCross模型,这是一种结合了深度神经网络(DNN)和交叉特征结构的混合模型。DeepCross模型通过对用户和物品的特征进行嵌入,并应用交叉特征层来捕捉不同特征之间的高阶交互,进而提升推荐精度。与传统的矩阵分解模型相比,DeepCross模型能够更好地处理非线性关系,适用于处理大量的稀疏数据,广泛应用于电商、社交平台、内容推荐等场景。通过该项目的实现,目标是优化现有推荐算法的效果,并为用户提供更精准的个性化内容推荐体验。
2.技术创新点摘要
混合架构: DeepCross模型结合了两种架构的优势:深度神经网络(DNN)和交叉网络。DNN用于捕捉特征之间的高阶非线性交互ÿ