Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
// 如果是红黑树结构的话
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
//在数中插入对应的节点、
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
// 如果node数量大于8那么就升级为红黑树。
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}
首先我们看到hash算法就不太一样,我们之前了解到HashMap的Hash算法是对key进行hash。然后用hash值与高16位进行异或,得到真正的hash值。具体的了解可以看我之前的博文:
<https://blog.youkuaiyun.com/weixin_44399827/article/details/118499097>
concurrentHashMap 更复杂,使得key值得hash值更加散列
static final int spread(int h) {
return (h ^ (h >>> 16)) & HASH_BITS;
}
static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
接下来我们来看下helpTransfer方法:
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
Node<K,V>[] nextTab; int sc;
//如果table不为空并且该下标的第一个node为ForwardingNode(ForwardingNode是一个代表扩容完毕的特殊node)
// 并且存储扩容后数据的nextTable不为空
if (tab != null && (f instanceof ForwardingNode) &&
(nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
int rs = resizeStamp(tab.length);
while (nextTab == nextTable && table == tab &&
(sc = sizeCtl) < 0) {
//扩容结束,跳出循环不参与扩容
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
//扩容
transfer(tab, nextTab);
break;
}
}
//返回扩容后的table,供上层方法使用
return nextTab;
}
return table;
}
最重要的扩容方法transfer:
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
//根据cpu核数计算出步长,用于分割扩容任务,方便其余线程帮助扩容,最小为16
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE;
//判断nextTab是否为空,nextTab是暂时存储扩容后的node的数组,第一次进入这个方法的线程才会发现nextTab为空
//前文提到的helpTransfer也会调用该方法,当helpTransfer调用该方法时nextTab不为空
if (nextTab == null) {
try {
@SuppressWarnings(“unchecked”)
//初始化nextTab为table长度的2倍
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) {
//如果发生了异常,则将sizeCtl设为integer的最大值,因为前文提过数组长度大于1<<30时就不能再扩容了
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
//将transferIndex赋值为原数组table的长度
transferIndex = n;
}
int nextn = nextTab.length;
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
boolean advance = true;
boolean finishing = false;
//这个for循环就是用来扩容最主要的方法了
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
//该while循环的作用有两点 1.将扩容任务根据步长分块 2.确定本次循环要rehash的下标节点(rehash与扩容意义相同)
while (advance) {
int nextIndex, nextBound;
//i为要进行rehash的下标,bound为分块任务的边界,finishing代表扩容完毕
//每个线程在第一次进行该if判断时,bound和i都为0,finishing为false,不进第一个if
//在第一个else if时将transferIndex赋值给nextIndex,不进第一个else if
//在第二个else if,将transferIndex更新为nextIndex-stride
//假设nextIndex为32,stride为16。代表数组长度32,有32个下标要倒序依次rehash,则任务分为两块(32-16,16-0)
//第一个线程会处理32-16的任务。
//第二个线程来的时候发现transferIndex为16,根据步长他会处理16-0的任务
//如果没有其余的线程帮助扩容,则第一个线程会再完成第一块任务后,再获取下一块任务直至都rehash完
if (--i >= bound || finishing)
advance = false;
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
//在rehash任务都处理完之前不会进入该if判断,该if方法会进入两次
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
//第一次进入的时候finishing为false
//第二次进入的时候finishing为true,代表扩容已经结束,将新的nextTab赋值给table,并将sizeCtl设置为table长度的0.75倍
if (finishing) {
nextTable = null;
table = nextTab;
sizeCtl = (n << 1) - (n >>> 1);
return;
}
//第一次进入的时候,会将finishing设置为true,并将i重新赋值为原table大小
//假如n=32,则会将最外面的for循环再循环32遍检查各个下标作为是否都已经扩容过了
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;
i = n;
}
}
//如果该下标内没有数据,则将该下标内放入ForwardingNode,代表该下标rehash结束
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
//如果该下标的hash值为-1(即ForwardingNode的hash值),代表已经rehash结束,继续下一次循环
else if ((fh = f.hash) == MOVED)
advance = true;
else {
//真正的扩容,锁住该下标的第一个node
synchronized (f) {
//再次判断该node有没有变
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
//如果该node的hash值>=0, 代表该下标内是链表
if (fh >= 0) {
int runBit = fh & n;
Node<K,V> lastRun = f;
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
//遍历链表,将链表内的node重新分配到新nextTab的i位置和i+n位置
//原始的链表会倒序分到两个下标内,越靠后的node在新的map的链表里越靠前
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
//更新新的nextTab,并将原table的该下标位置放入ForwardingNode
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
//该下标内是红黑树
else if (f instanceof TreeBin) {
TreeBin<K,V> t = (ConcurrentHashMap.TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
//将原树rehash到两个新树里
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
//如果树的node数量<=6,则将红黑树变为链表
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t;
//将新树或链表放到新的table对应的下标里
//并将原table的该下标位置放入ForwardingNode
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
最后的扩容方法参考的博文:有点难理解,有兴趣的同学可以认真看完分析:
**参考文献:**
<https://blog.youkuaiyun.com/ddxd0406/article/details/81389583>