LangChain结合LLM做私有化文档搜索

我们知道LLM(大语言模型)的底模是基于已经过期的公开数据训练出来的,对于新的知识或者私有化的数据LLM一般无法作答,此时LLM会出现“幻觉”。针对“幻觉”问题,一般的解决方案是采用RAG做检索增强。

但是我们不可能把所有数据都丢给LLM去学习,比如某个公司积累的某个行业的大量内部知识。此时就需要一个私有化的文档搜索工具了。

本文聊聊如何使用LangChain结合LLM快速做一个私有化的文档搜索工具。之前介绍过,LangChain几乎是LLM应用开发的第一选择,它的野心也比较大,它致力于将自己打造成LLM应用开发的最大社区。自然,它有这方面的成熟解决方案。

文末,还会向朋友们推荐一款非常好用的AI机器人和LLM API超市,价格实惠又稳定,还可以领一波福利。

1. RAG检索流程

使用 LangChain 实现私有化文档搜索的主要流程,如下图所示:

复制代码文档加载 → 文档分割 → 文档嵌入 → 向量化存储 → 文档检索 → 生成回答

img

img

2. 代码实践细节

2.1. 文档加载

首先,我们需要加载文档数据。文档可以是各种格式,比如文本文件、PDF、Word 等。使用 LangChain,可以轻松地加载这些文档。下面以PDF为例:

ini复制代码from langchain_community.document_loaders import PyPDFLoader

loader = PyPDFLoader("./GV2.pdf")
docs = loader.load()

2.2. 文档分割

加载的文档通常会比较大,为了更高效地处理和检索,我们需要将文档分割成更小的段落或句子。LangChain 提供了便捷的文本分割工具,可以按句子、块长度等方式分割文档。

ini复制代码from langchain.text_splitter import RecursiveCharacterTextSplitter

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=50,
    chunk_overlap=20,
    separators=["\n", "。", "!", "?", ",", "、", ""],
    add_start_index=True,
)
texts = text_splitter.split_documents(docs)

分割后的文档内容可以进一步用于生成向量。

2.3. 文档嵌入 Embeddings

文档分割后,我们需要将每一段文本转换成向量,这个过程称为文档嵌入。文档嵌入是将文本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值