#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr
void Wn_i(int n,int i,complex Wn,char flag)
{
Wn->real = cos(2PIi/n);
if(flag == 1)
Wn->imag = -sin(2PIi/n);
else if(flag == 0)
Wn->imag = -sin(2PI*i/n);
}
//傅里叶变化
void fft(int N,complex f[])
{
complex t,wn;//中间变量
int i,j,k,m,n,l,r,M;
int la,lb,lc;
/----计算分解的级数M=log2(N)----/
for(i=N,M=1;(i=i/2)!=1;M++);
/----按照倒位序重新排列原信号----/
for(i=1,j=N/2;i<=N-2;i++)
{
if(i<j)
{
t=f[j];
f[j]=f[i];
f[i]=t;
}
k=N/2;
while(k<=j)
{
j=j-k;
k=k/2;
}
j=j+k;
}
/----FFT算法----/
for(m=1;m<=M;m++)
{
la=pow(2,m); //la=2^m代表第m级每个分组所含节点数
lb=la/2; //lb代表第m级每个分组所含碟形单元数
//同时它也表示每个碟形单元上下节点之间的距离
/----碟形运算----/
for(l=1;l<=lb;l++)
{
r=(l-1)*pow(2,M-m);
for(n=l-1;n<N-1;n=n+la) //遍历每个分组,分组总数为N/la
{
lc=n+lb; //n,lc分别代表一个碟形单元的上、下节点编号
Wn_i(N,r,&wn,1);//wn=Wnr
c_mul(f[lc],wn,&t);//t = f[lc] * wn复数运算
c_sub(f[n],t,&(f[lc]));//f[lc] = f[n] - f[lc] * Wnr
c_plus(f[n],t,&(f[n]));//f[n] = f[n] + f[lc] * Wnr
}
}
}
}
//傅里叶逆变换
void ifft(int N,complex f[])
{
int i=0;
conjugate_complex(N,f,f);
fft(N,f);
conjugate_complex(N,f,f);
for(i=0;i<N;i++)
{
f[i].imag = (f[i].imag)/N;
f[i].real = (f[i].real)/N;
}
}
fft.h
#ifndef FFT_H
#define FFT_H
typedef struct complex //复数类型
{
float real; //实部
float imag; //虚部
}complex;
#define PI 3.1415926535897932384626433832795028841971
///
void conjugate_complex(int n,complex in[],complex out[]);
void c_plus(complex a,complex b,complex *c);//复数加
void c_mul(complex a,complex b,complex *c) ;//复数乘
void c_sub(complex a,complex b,complex *c); //复数减法
void c_div(complex a,complex b,complex *c); //复数除法
void fft(int N,complex f[]);//傅立叶变换 输出也存在数组f中
void ifft(int N,complex f[]); // 傅里叶逆变换
void c_abs(complex f[],float out[],int n);//复数数组取模
#endif
使用
fft(FFT_NPT, fft_buff); //进行FFT处理
点数必须为8,16,32,64,128,256...



**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!**
2)]
[外链图片转存中...(img-Qj5nqug7-1719276368673)]
[外链图片转存中...(img-HW8GDeyi-1719276368673)]
**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!**