2024年物联网嵌入式最全图像的旋转之c++实现(qt + 不调包)_c(1),物联网嵌入式开发笔试面试题

收集整理了一份《2024年最新物联网嵌入式全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升的朋友。
img
img

如果你需要这些资料,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人

都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

unsigned int outWidth = (unsigned int)(max(fabs(tranX4 - tranX1), fabs(tranX3 - tranX2)) + 1.5);
unsigned int outHeight = (unsigned int)(max(fabs(tranY4 - tranY1), fabs(tranY3 - tranY2)) + 1.5);

QImage* newImage = new QImage(outWidth,outHeight,QImage::Format_ARGB32);

double num1 = -0.5 * outWidth * fCos - 0.5 * outHeight * fSin + 0.5 * image->width();
double num2 =  0.5 * outWidth * fSin - 0.5 * outHeight * fCos + 0.5 * image->height();

unsigned char* copyPixel = NULL;
unsigned char* objPixel = NULL;
int x = 0;
int y = 0;

for(long j = 0; j < (long)outHeight; j++)
{
    for(long i = 0; i <(long)outWidth; i++)
    {
        x = (int)(i * fCos + j * fSin + num1 + 0.5);
        y = (int)(-i * fSin + j * fCos + num2 + 0.5);

        if(x == image->width())
        {
            x--;
        }
        if(y == image->height())
        {
            y--;
        }
        copyPixel = image->bits() + y * image->width() * 4  + x * 4;
        objPixel = newImage->bits() + j * outWidth * 4 + i * 4;

        if(x >= 0 && x < image->width() && y >=0 && y < image->height())
        {
            memcpy(objPixel, copyPixel, 4);
        }
    }
}
return newImage;

}

/图像的旋转函数(双线性插值法) angle为旋转度数,以弧度表示/
QImage* MainWindow::RotateInterpolation(QImage* image,double angle)
{
int srcX1, srcX2, srcX3, srcX4;
int srcY1, srcY2, srcY3, srcY4;

srcX1 = 0;
srcY1 = 0;
srcX2 = image->width() - 1;
srcY2 = 0;
srcX3 = 0;
srcY3 = image->height() - 1;
srcX4 = image->width() - 1;
srcY4 = image->height() - 1;

double fSin = sin(angle);
double fCos = cos(angle);

double tranX1, tranX2, tranX3, tranX4;
double tranY1, tranY2, tranY3, tranY4;

tranX1 = fCos * srcX1 + fSin * srcY1;
tranY1 = -fSin * srcX1 + fCos * srcY1;
tranX2 = fCos * srcX2 + fSin * srcY2;
tranY2 = -fSin * srcX2 + fCos * srcY2;
tranX3 = fCos * srcX3 + fSin * srcY3;
tranY3 = -fSin * srcX3 + fCos * srcY3;
tranX4 = fCos * srcX4 + fSin * srcY4;
tranY4 = -fSin * srcX4 + fCos * srcY4;

long outWidth = (unsigned int)(max(fabs(tranX4 - tranX1), fabs(tranX3 - tranX2)) + 1.5);
long outHeight = (unsigned int)(max(fabs(tranY4 - tranY1), fabs(tranY3 - tranY2)) + 1.5);

QImage* newImage = new QImage(outWidth,outHeight,QImage::Format_ARGB32);

double num1 = -0.5 * outWidth * fCos - 0.5 * outHeight * fSin + 0.5 * image->width();
double num2 =  0.5 * outWidth * fSin - 0.5 * outHeight * fCos + 0.5 * image->height();

double x = 0.0;
double  y = 0.0;

int r,g,b;
for (long  j = 0; j < outHeight; j++)
{

    for(long i =0; i < outWidth; i++)
    {
        x = (i * fCos + j * fSin + num1 + 0.5);
        y = (-i * fSin + j * fCos + num2 + 0.5);


        if (x > image->width() || x < 0 || y > image->height() || y < 0)
            continue;
        int x1, x2, y1, y2;
        x1= ( int)x;
        x2 = x1 + 1;
        y1 = ( int)y;
        y2 = y1 + 1;

        QColor oldcolor1;
        QColor oldcolor2;
        QColor oldcolor3;
        QColor oldcolor4;
        double u, v;
        u = x - x1;
        v = y - y1;
        if ((x >= image->width() - 1 ) && (y >= image->height() - 1 ))
        {
        oldcolor1 = QColor(image->pixel(x1,y1));
        r = oldcolor1.red();
        g = oldcolor1.green();
        b = oldcolor1.blue();
        }
        else if (x >= image->width() - 1)
        {
            oldcolor1 = QColor(image->pixel(x1,y1));
            oldcolor3 = QColor(image->pixel(x1,y2));
            r = oldcolor1.red() * (1 - v) + oldcolor3.red() * v;
            g = oldcolor1.green() * (1 - v) + oldcolor3.green() * v;
            b = oldcolor1.blue() * (1 - v) + oldcolor3.blue() * v;
        }
        else if (x > image->height() - 1)
        {
            oldcolor1 = QColor(image->pixel(x1,y1));
            oldcolor2 = QColor(image->pixel(x2,y1));
            r = oldcolor1.red() * (1 - u) + oldcolor2.red() * u;
            g = oldcolor1.green() * (1 - u) + oldcolor2.green() * u;
            b = oldcolor1.blue() * (1 - u) + oldcolor2.blue() * u;
        }
        else
        {
            oldcolor1 = QColor(image->pixel(x1,y1));
            oldcolor2 = QColor(image->pixel(x2,y1));
            oldcolor3 = QColor(image->pixel(x1,y2));
            oldcolor4 = QColor(image->pixel(x2,y2));
            int r1,g1,b1;
            r = oldcolor1.red() * (1 - u) + oldcolor2.red() * u;
            g = oldcolor1.green() * (1 - u) + oldcolor2.green() * u;
            b = oldcolor1.blue() * (1 - u) + oldcolor2.blue() * u;

            r1 = oldcolor3.red() * (1 - u) + oldcolor4.red() * u;
            g1 = oldcolor3.green() * (1 - u) + oldcolor4.green() * u;
            b1 = oldcolor3.blue() * (1 - u) + oldcolor4.blue() * u;

            r = r * (1 - v) + r1 * v;
            g = g * (1 - v) + g1 * v;
            b = b * (1 - v) + b1 * v;
        }

      newImage->setPixel(i, j, qRgb(r, g, b));
    }
}
return newImage;

}


#### **3.下载路径**:


   整个系列链接: [https://blog.youkuaiyun.com/m0\_59023219/category\_12425183.html](https://bbs.youkuaiyun.com/topics/618679757)


   内容介绍:


  [1]根据算法原理,编写纯c++源码,不调用外源库opencv 等;  
   [2]包括各种图像处理的基本算法,包含腐蚀膨胀,缩放,转置,镜像,平移,均衡变化,灰度拉升,灰度阈值,灰度非线性,转灰度,灰度线性,旋转,简单平滑,高斯平滑,轮廓跟踪,种子算法,hough直线检测,拉普拉斯,带方向边缘检测,常规边缘检测(梯度算子、Roberts算子和Sobel算子),中值滤波,反色操作等;  
   [3]程序中有完整的注释,便于大家很好理解代码。


![img](https://img-blog.csdnimg.cn/img_convert/6c0d0087e5890200e54b433127841842.png)
![img](https://img-blog.csdnimg.cn/img_convert/bffebbd380e3098fa07587a5f5225a54.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上物联网嵌入式知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、电子书籍、讲解视频,并且后续会持续更新**

**[如果你需要这些资料,可以戳这里获取](https://bbs.youkuaiyun.com/topics/618679757)**

上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上物联网嵌入式知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、电子书籍、讲解视频,并且后续会持续更新**

**[如果你需要这些资料,可以戳这里获取](https://bbs.youkuaiyun.com/topics/618679757)**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值