PyTorch数据归一化处理:transforms(2)

收集整理了一份《2024年最新物联网嵌入式全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升的朋友。
img
img

如果你需要这些资料,可以戳这里获取

需要这些体系化资料的朋友,可以加我V获取:vip1024c (备注嵌入式)

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人

都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

(2)RGB单个通道的值是[0, 255],所以一个通道的均值应该在127附近才对。
如果Normalize()函数去计算 x = (x - mean)/std ,因为RGB是[0, 255],算出来的x就不可能落在[-1, 1]区间了。

(3)在我看的了论文代码里面是这样的:
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
为什么就确定了这一组数值,这一组数值是怎么来的? 为什么这三个通道的均值都是小于1的值呢?

理解:

(1)针对第一个问题,mean 和 std 肯定要在normalize()之前自己先算好再传进去的,不然每次normalize()就得把所有的图片都读取一遍算出mean和std

(2)针对第二个问题,有两种情况
(a )如果是imagenet数据集,那么ImageNet的数据在加载的时候就已经转换成了[0,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值