InsCode Stable Diffusion使用教程(非常详细)从零基础入门到精通,看完这一篇就够了_outpainting 模型下载(1)

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

这是一个中国华丽古风风格模型,也可以说是一个古风游戏角色模型,具有 2.5D 的质感。目前最新的版本是 GuoFeng3.4。

在这里插入图片描述

  • blindbox

可生成盲盒风格的 LoRA 模型,使用时主模型建议选 ReV Animated。

在这里插入图片描述

如何在 InsCode 给 Stable Diffusion 安装 Lora

  1. 首先,在自己的电脑上下载好需要安装的 Lora 文件,并通过 Jupyter Lab 启动 GPU,如下图所示:

在这里插入图片描述
2. 打开 JupyterLab 界面,找到上传入口,将下载好的 Lora 上传到 GPU。

在这里插入图片描述
3. 打开 Terminal ,将已经上传到 GPU 的 Lora 文件复制到 /release/stable-diffusion-webui/models/Lora 文件夹下。

在这里插入图片描述
具体命令:

# cd /root/workspace
# ls
jupyterlab.log  shinkai_makoto_offset.safetensors  stable-diffusion-webui.log
# cp shinkai_makoto_offset.safetensors /release/stable-diffusion-webui/models/Lora 
# cd /release/stable-diffusion-webui/models/Lora
# ls
Cute_Animals.safetensors     SuoiresnuStyle-Rech44.safetensors  ZhouShuyi.safetensors   capi-09.safetensors                 mix4.safetensors
GuoFeng3.2_Lora.safetensors  YaeMiko_mixed.safetensors          cZhouShuyi.safetensors  koreanDollLikeness_v15.safetensors  	shinkai_makoto_offset.safetensors


注意,这里的 shinkai_makoto_offset.safetensors 是我下载的 Lora 文件

  1. 当看到下载的 Lora 模型文件已经存在 Lora 文件夹下,重新打开 Stable Diffusion WebUI,点击右侧红圈中的 icon,稍等片刻,可以看到 Lora 界面被打开

在这里插入图片描述
5. 点击 Lora 之后,可以看到当前 Stable Diffusion 已经安装的 Lora,找到自己上传的 Lora,就会在 Prompt 产生一行对该 Lora 的引用。

在这里插入图片描述

至此,当前的 Stable Diffusion 版本已经装好了某个自己喜欢的 Lora,同理 , 可以用同样的操作方式安装 Checkpoint、 Embedding 等。

接下来我们使用 InsCode Stable Diffusion 来进行 AI 绘图。

五、使用 InsCode Stable Diffusion 进行 AI 绘图

下面是我的一些生成例子的图片展示,附带参数设置以提示词和种子:

生成图一

在这里插入图片描述
参数配置:

Steps(采样迭代步数): 30
Sampler(采样方法): Euler a
生成批次:1
批次数量:1
CFG scale: 7
Size: 768x1024
Model hash: 7234b76e42
Model: chilloutmix-Ni
Version: v1.2.0
Seed: 162297642


提示词:

Prompt: Best quality,raw photo,seductive smile,cute,realis

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值