大家好,小编来为大家解答以下问题,python数据分析与可视化第二版答案,Python数据分析与可视化第2版答案,今天让我们一起来看看吧!
Source code download: 本文相关源码
什么是数据可视化? 数据可视化是为了使得数据更高效地反应数据情况,便于让读者更高效阅读,通过数据可视化突出数据背后的规律,以此突出数据中的重要因素,如果使用Python做数据可视化,建议学好如下这四个Python数据分析包,分别是:
Pandas、Matplotlib、Seaborn、Pyecharts
学好以上四个数据分析包,做可视化足够用了,全文较长,建议耐心看完,学习后即可使用Python做数据可视化,具体的代码实操部分可以实际用代码进行演示,这样才能更好的掌握,下面一起来学习~
01. Pandas
官网https://www.pypandas.cn/
Pandas 是 Python的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据,广泛应用于数据分析领域,Pandas 适用于处理与 Excel 表类似的表格数据,以及有序和无序的时间序列数据等。
Pandas 的主要数据结构是 Series(一维数据)和 DataFrame(二维数据),这两种数据结构足以处理金融、统计、社会科学、工程等领域里的大多数典型用例,使用pandas进行数据分析流程包含数据整理与清洗、数据分析与建模、数据可视化与制表等阶段快码论文。
-
灵活的分组功能:group by数据分组;
-
直观地合并功能:merge数据连接;
-
灵活地重塑功能:reshape数据重塑;
pandas库不仅可以做一些数据清洗的工作,还可以使用pandas作图,并且做图时,使用一行代码就可以轻松作图,详细的作图方法可以看代码中的注释。
#导入pandas库
import pandas as pd
#生成一个Series
s=pd.Series([1,3,3,4], index=list('ABCD'))
#括号内不指定图表类型,则默认生成直线图
s.plot()
#条形图
s.plot(kind='bar')
#水平条形图
s.plot.barh()
#饼图
s.plot.pie()
#直方图
s.plot.hist()
#密度图
import numpy as np
s=pd.Series(np.random.randn(1000)) #生成一列随机数
s.plot.kde()
s.plot.density()
#散点图
import numpy as np
#生成一个DataFrame
df=pd.DataFrame(np.random.randn(1000,2),
columns=['X1','Y'])
df.plot.scatter(x='X1',y='Y')
#六角箱图
df.plot.hexbin(x='X1',y='Y',gridsize=8)
#箱型图
df=pd.DataFrame(np.random.rand(10,2),columns=['A','B'])
df.plot.box()