DeepFace【部署 04】轻量级人脸识别和面部属性分析框架deepface使用Docker部署CPU+GPU两个版本及cuDNN安装_deepface要求cudnn版本8

在结束之际,我想重申的是,学习并非如攀登险峻高峰,而是如滴水穿石般的持久累积。尤其当我们步入工作岗位之后,持之以恒的学习变得愈发不易,如同在茫茫大海中独自划舟,稍有松懈便可能被巨浪吞噬。然而,对于我们程序员而言,学习是生存之本,是我们在激烈市场竞争中立于不败之地的关键。一旦停止学习,我们便如同逆水行舟,不进则退,终将被时代的洪流所淘汰。因此,不断汲取新知识,不仅是对自己的提升,更是对自己的一份珍贵投资。让我们不断磨砺自己,与时代共同进步,书写属于我们的辉煌篇章。

需要完整版PDF学习资源

需要体系化学习资料的朋友,可以加我V获取:vip204888 (备注网络安全)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以点击这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

pip install tensorrt -i https://pypi.tuna.tsinghua.edu.cn/simple

安装后的启动命令:

docker run --name deepface --privileged=true --restart=always --net="host" \
-e PATH=/usr/local/cuda-11.2/bin:$PATH -e LD\_LIBRARY\_PATH=/usr/local/cuda-11.2/lib64:$LD\_LIBRARY\_PATH \
-v /root/.deepface/weights/:/root/.deepface/weights/ \
-v /usr/local/cuda-11.2/:/usr/local/cuda-11.2/ \
-v /opt/xinan-facesearch-service-public/deepface/api/app.py:/app/app.py \
-d deepface_image

测试fastmtcnn将最新代码挂载到目录下:

docker run --name deepface_gpu_src --privileged=true --restart=always --net="host" \
-e PATH=/usr/local/cuda-11.2/bin:$PATH -e LD\_LIBRARY\_PATH=/usr/local/cuda-11.2/lib64:$LD\_LIBRARY\_PATH \
-v /root/.deepface/weights/:/root/.deepface/weights/ \
-v /usr/local/cuda-11.2/:/usr/local/cuda-11.2/ \
-v /opt/test-facesearch/deepfacesrc/:/app/deepface/ \
-v /opt/xinan-facesearch-service-public/deepface/api/app.py:/app/app.py \
-d deepface_image

跟CPU部署不同点:

  1. 设置了两个环境变量-e PATH=/usr/local/cuda-11.2/bin:$PATH -e LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64:$LD_LIBRARY_PATH
  2. 添加了一个挂载目录-v /usr/local/cuda-11.2/:/usr/local/cuda-11.2/
  3. 添加了一个挂载文件-v /deepface/api/app.py:/app/app.py

文件/deepface/api/app.py内容如下:

import tensorrt as tr
import tensorflow as tf
from flask import Flask
from routes import blueprint

def create\_app():
    available = tf.config.list_physical_devices('GPU')
    print(f"available:{available}")
    app = Flask(__name__)
    app.register_blueprint(blueprint)
    return app

调用tensorflow前需要先引入tensorrt

3.cuDNN安装

官网安装文档:https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html
cuDNN的支持矩阵:https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html

The NVIDIA CUDA® Deep Neural Network library (cuDNN) is a GPU-accelerated library of primitives for deep neural networks. cuDNN provides highly tuned implementations for standard routines such as forward and backward convolution, attention, matmul, pooling, and normalization.

安装环境:

[root@localhost ~]# cat /etc/centos-release
CentOS Linux release 7.7.1908 (Core)

3.1 Prerequisites

需要先安装1.GPU Driver2.CUDAToolkit

nvidia-smi

# 查询结果
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.27.04    Driver Version: 460.27.04    CUDA Version: 11.2     |
|-------------------------------+----------------------+----------------------+

3.zlib

yum list installed | grep zlib

# 查询结果
zlib.x86_64                                1.2.7-18.el7               @anaconda
zlib-devel.x86_64                          1.2.7-18.el7               @base

3.2 下载Linux版本cuDNN

下载cuDNN需要先注册NVIDIA开发者计划:https://developer.nvidia.com/developer-program,下载页面:https://developer.nvidia.com/cudnn,选择平台和对应的版本进行下载,本次下载的为cudnn-11.2-linux-x64-v8.1.1.33.tgz大小为1.2G。浏览器下载容易失败,可复制浏览器的下载链接在Linux服务器上进行下载【腾讯云服务器速度12MB/s】:

wget https://developer.download.nvidia.cn/compute/machine-learning/cudnn/secure/8.1.1.33/11.2_20210301/cudnn-11.2-linux-x64-v8.1.1.33.tgz?G2wTHq8E--2jJ9iEfgtFbqfMGX0I1XD6BIksPkVIiU9F3ttrupv_oYvURaZX1dV71EIqEI767WbG5svvSMBElcaVrqZl15UEOUORNWbYwKZDyxidGmwHmG44XiEo6yyM1Rt7ct6NGlVXnxx0etcI9pNJ1PiaHYddY86Lc_yaBLdJwy9hqku4TW6NSNr7XfuCYXvGOPvOmraR4EOfg6Q=&t=eyJscyI6IndlYnNpdGUiLCJsc2QiOiJkZXZlbG9wZXIubnZpZGlhLmNvbS9jdWRhLTEwLjItZG93bmxvYWQtYXJjaGl2ZT90YXJnZXRfb3M9TGludXgifQ==

3.3 安装

The following steps describe how to build a cuDNN dependent program. Choose the installation method that meets your environment needs. For example, the tar file installation applies to all Linux platforms. The Debian package installation applies to Debian 11, Ubuntu 18.04, Ubuntu 20.04, and 22.04. The RPM package installation applies to RHEL7, RHEL8, and RHEL9. In the following sections:

  • your CUDA directory path is referred to as /usr/local/cuda/
  • your cuDNN download path is referred to as

可根据不同平台选择适合的安装方法,tar文件适合所有的Linux平台,安装步骤为:

  1. 解压安装包
tar -xvf cudnn-linux-$arch-8.x.x.x_cudaX.Y-archive.tar.xz

  1. Copy the following files into the CUDA toolkit directory
$ sudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda/include 
$ sudo cp -P cudnn-*-archive/lib/libcudnn* /usr/local/cuda/lib64 
$ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

安装文件为cudnn-11.2-linux-x64-v8.1.1.33.tgz实际操作步骤为:

# 1.解压
tar -zxvf cudnn-11.2-linux-x64-v8.1.1.33.tgz

# 2.复制并赋权
# 解压后的文件夹名称为cuda
# inculde【18个文件】
cp ./cuda/include/cudnn*.h /usr/local/cuda/include
# lib64【8个文件 15个软连接】-P 选项表示保留源文件或目录的属性
cp -P ./cuda/lib64/libcudnn* /usr/local/cuda/lib64
# 所有用户赋可读权限
chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

另一个版本的安装文件为cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz步骤为:

# 1.解压
tar -xvf cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz

# 2.复制并赋权 inculde【18个文件】 lib【13个文件 20个软连接】
cp ./cudnn-linux-x86_64-8.6.0.163_cuda11-archive/include/cudnn*.h /usr/local/cuda/include



本人从事网路安全工作12年,曾在2个大厂工作过,安全服务、售后服务、售前、攻防比赛、安全讲师、销售经理等职位都做过,对这个行业了解比较全面。


最近遍览了各种网络安全类的文章,内容参差不齐,其中不伐有大佬倾力教学,也有各种不良机构浑水摸鱼,在收到几条私信,发现大家对一套完整的系统的网络安全从学习路线到学习资料,甚至是工具有着不小的需求。


最后,我将这部分内容融会贯通成了一套282G的网络安全资料包,所有类目条理清晰,知识点层层递进,需要的小伙伴可以点击下方小卡片领取哦!下面就开始进入正题,如何从一个萌新一步一步进入网络安全行业。


![](https://img-blog.csdnimg.cn/img_convert/311903982dea1d8a5d2c98fc271b5b41.jpeg)

**需要体系化学习资料的朋友,可以加我V获取:vip204888 (备注网络安全)**

### 学习路线图


 其中最为瞩目也是最为基础的就是网络安全学习路线图,这里我给大家分享一份打磨了3个月,已经更新到4.0版本的网络安全学习路线图。


相比起繁琐的文字,还是生动的视频教程更加适合零基础的同学们学习,这里也是整理了一份与上述学习路线一一对应的网络安全视频教程。


![](https://img-blog.csdnimg.cn/img_convert/1ddfaf7dc5879b1120e31fafa1ad4dc7.jpeg)


#### 网络安全工具箱


当然,当你入门之后,仅仅是视频教程已经不能满足你的需求了,你肯定需要学习各种工具的使用以及大量的实战项目,这里也分享一份**我自己整理的网络安全入门工具以及使用教程和实战。**


![](https://img-blog.csdnimg.cn/img_convert/bcd1787ce996787388468bb227d8f959.jpeg)


#### 项目实战


最后就是项目实战,这里带来的是**SRC资料&HW资料**,毕竟实战是检验真理的唯一标准嘛~


![](https://img-blog.csdnimg.cn/img_convert/35fc46df24091ce3c9a5032a9919b755.jpeg)


#### 面试题


归根结底,我们的最终目的都是为了就业,所以这份结合了多位朋友的亲身经验打磨的面试题合集你绝对不能错过!

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以点击这里获取](https://bbs.youkuaiyun.com/topics/618540462)**

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值