还有兄弟不知道网络安全面试可以提前刷题吗?费时一周整理的160+网络安全面试题,金九银十,做网络安全面试里的显眼包!
王岚嵚工程师面试题(附答案),只能帮兄弟们到这儿了!如果你能答对70%,找一个安全工作,问题不大。
对于有1-3年工作经验,想要跳槽的朋友来说,也是很好的温习资料!
【完整版领取方式在文末!!】
93道网络安全面试题
内容实在太多,不一一截图了
黑客学习资源推荐
最后给大家分享一份全套的网络安全学习资料,给那些想学习 网络安全的小伙伴们一点帮助!
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
😝朋友们如果有需要的话,可以联系领取~
1️⃣零基础入门
① 学习路线
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
② 路线对应学习视频
同时每个成长路线对应的板块都有配套的视频提供:
2️⃣视频配套工具&国内外网安书籍、文档
① 工具
② 视频
③ 书籍
资源较为敏感,未展示全面,需要的最下面获取
② 简历模板
因篇幅有限,资料较为敏感仅展示部分资料,添加上方即可获取👆
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
}
}
}
1234567891011121314151617181920212223
4.1.2 同步函数
就是将synchronized加在方法上。
分为两种:
第一种是非静态同步函数,即方法是非静态的,使用的this对象锁,如下代码所示
第二种是静态同步函数,即方法是用static修饰的,使用的锁是当前类的class文件(xxx.class)。
public synchronized void sale () {
if (ticket > 0) {
System.out.println(Thread.currentThread().getName() + “售卖第” + (100-ticket+1) + “张票”);
ticket–;
}
}
123456
4.1.3 多线程死锁线程
如下代码所示,
线程t1,运行后在同步代码块中需要oj对象锁,,运行到sale方法时需要this对象锁
线程t2,运行后需要调用sale方法,需要先获取this锁,再获取oj对象锁
那这样就会造成,两个线程相互等待对方释放锁。就造成了死锁情况。简单来说就是:
同步中嵌套同步,导致锁无法释放。
class ThreadTrain3 implements Runnable {
private static int count = 100;
public boolean flag = true;
private static Object oj = new Object();
@Override
public void run() {
if (flag) {
while (true) {
synchronized (oj) {
sale();
}
}
} else {
while (true) {
sale();
}
}
}
public static synchronized void sale() {
// 前提 多线程进行使用、多个线程只能拿到一把锁。
// 保证只能让一个线程 在执行 缺点效率降低
synchronized (oj) {
if (count > 0) {
try {
Thread.sleep(50);
} catch (Exception e) {
// TODO: handle exception
}
System.out.println(Thread.currentThread().getName() + “,出售第” + (100 - count + 1) + “票”);
count–;
}
}
}
}
public class ThreadDemo3 {
public static void main(String[] args) throws InterruptedException {
ThreadTrain3 threadTrain1 = new ThreadTrain3();
Thread t1 = new Thread(threadTrain1, “①号窗口”);
Thread t2 = new Thread(threadTrain1, “②号窗口”);
t1.start();
Thread.sleep(40);
threadTrain1.flag = false;
t2.start();
}
}
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748
4.2 Lock
可以视为synchronized的增强版,提供了更灵活的功能。该接口提供了限时锁等待、锁中断、锁尝试等功能。synchronized实现的同步代码块,它的锁是自动加的,且当执行完同步代码块或者抛出异常后,锁的释放也是自动的。
Lock l = …;
l.lock();
try {
// access the resource protected by this lock
} finally {
l.unlock();
}
1234567
但是Lock锁是需要手动去加锁和释放锁,所以Lock相比于synchronized更加的灵活。且还提供了更多的功能比如说
tryLock()方法会尝试获取锁,如果锁不可用则返回false,如果锁是可以使用的,那么就直接获取锁且返回true,官方代码如下:
Lock lock = …;
if (lock.tryLock()) {
try {
// manipulate protected state
} finally {
lock.unlock();
}
} else {
// perform alternative actions
}
12345678910
例子:
/*
- 使用ReentrantLock类实现同步
- */
class MyReenrantLock implements Runnable{
//向上转型
private Lock lock = new ReentrantLock();
public void run() {
//上锁
lock.lock();
for(int i = 0; i < 5; i++) {
System.out.println("当前线程名: “+ Thread.currentThread().getName()+” ,i = "+i);
}
//释放锁
lock.unlock();
}
}
public class MyLock {
public static void main(String[] args) {
MyReenrantLock myReenrantLock = new MyReenrantLock();
Thread thread1 = new Thread(myReenrantLock);
Thread thread2 = new Thread(myReenrantLock);
Thread thread3 = new Thread(myReenrantLock);
thread1.start();
thread2.start();
thread3.start();
}
}
123456789101112131415161718192021222324252627
输出结果:
由此我们可以看出,只有当当前线程打印完毕后,其他的线程才可继续打印,线程打印的数据是分组打印,因为当前线程持有锁,但线程之间的打印顺序是随机的。
即调用lock.lock() 代码的线程就持有了“对象监视器”,其他线程只有等待锁被释放再次争抢。
4.3 volatile关键字
先来看一段错误的代码示例:
class ThreadVolatileDemo extends Thread {
public boolean flag = true;
@Override
public void run() {
System.out.println(“子线程开始执行”);
while (flag) {
}
System.out.println(“子线程执行结束…”);
}
public void setFlag(boolean flag){
this.flag=flag;
}
}
public class ThreadVolatile {
public static void main(String[] args) throws InterruptedException {
ThreadVolatileDemo threadVolatileDemo = new ThreadVolatileDemo();
threadVolatileDemo.start();
Thread.sleep(3000);
threadVolatileDemo.setFlag(false);
System.out.println(“flag已被修改为false!”);
}
}
12345678910111213141516171819202122232425
输出结果:
虽然flag已被修改,但是子线程依然在执行,这里产生的原因就是Java内存模型(JMM) 导致的。
由于主线程休眠了3秒,所以子线程没有意外的话是一定会被执行run方法的。而当子线程由于调用start方法而执行run方法时,会将flag这个共享变量拷贝一份副本存到线程的本地内存中。此时线程中的flag为true,即使主线程在休眠后修改了flag值为false,子线程也不会知道,即不会修改自己副本的flag值。所以这就导致了该问题的出现。
注意:在测试时,一定要让主线程进行sleep或其他耗时操作,如果没有这步操作,很有可能在子线程执行run方法而拷贝共享变量到线程本地内存之前,主线程就已经修改了flag值。
这里再来介绍一下Java内存模型吧!
在Java内存模型规定了所有的变量(这里的变量是指成员变量,静态字段等但是不包括局部变量和方法参数,因为这是线程私有的)都存储在主内存中,每条线程还有自己的工作内存,线程的工作内存中拷贝了该线程使用到的主内存中的变量(只是副本,从主内存中拷贝了一份,放到了线程的本地内存中),线程对变量的所有操作都必须在工作内存中进行,而不能直接读写主内存。 不同的线程之间也无法直接访问对方工作内存中的变量,线程间变量的传递均需要自己的工作内存和主存之间进行数据同步进行。
而JMM就作用于工作内存和主存之间数据同步过程。他规定了如何做数据同步以及什么时候做数据同步。
1. 首先要将共享变量从主内存拷贝到线程自己的工作内存空间,工作内存中存储着主内存中的变量副本拷贝;
2. 线程对副本变量进行操作,(不能直接操作主内存);
3. 操作完成后通过JMM 将线程的共享变量副本与主内存进行数据的同步,将数据写入主内存中;
4. 不同的线程间无法访问对方的工作内存,线程间的通信(传值)必须通过主内存来完成。
当多个线程同时访问一个数据的时候,可能本地内存没有及时刷新到主内存,所以就会发生线程安全问题
JMM是在线程调run方法的时候才将共享变量写到自己的线程本地内存中去的,而不是在调用start方法的时候。
解决办法:
当出现这种问题时,就可以使用Volatile关键字进行解决。
Volatile 关键字的作用是变量在多个线程之间可见。使用Volatile关键字将解决线程之间可见性,强制线程每次读取该值的时候都去“主内存”中取值。
只需要在flag属性上加上该关键字即可。
public volatile boolean flag = true;
1
子线程每次都不是读取的线程本地内存中的副本变量了,而是直接读取主内存中的属性值。
volatile虽然具备可见性,但是不具备原子性。
4.4 synchronized、volatile和Lock之间的区别
synochronizd和volatile关键字区别:
1)volatile关键字解决的是变量在多个线程之间的可见性;而sychronized关键字解决的是多个线程之间访问共享资源的同步性。
tip: final关键字也能实现可见性:被final修饰的字段在构造器中一旦初始化完成,并且构造器没有把 **“this”**的引用传递出去(this引用逃逸是一件很危险的事情,其它线程有可能通过这个引用访问到了"初始化一半"的对象),那在其他线程中就能看见final;
2)volatile只能用于修饰变量,而synchronized可以修饰方法,以及代码块。(volatile是线程同步的轻量级实现,所以volatile性能比synchronized要好,并且随着JDK新版本的发布,sychronized关键字在执行上得到很大的提升,在开发中使用synchronized关键字的比率还是比较大);
3)多线程访问volatile不会发生阻塞,而sychronized会出现阻塞;
4)volatile能保证变量在多个线程之间的可见性,但不能保证原子性;而sychronized可以保证原子性,也可以间接保证可见性,因为它会将私有内存和公有内存中的数据做同步。
线程安全包含原子性和可见性两个方面。
对于用volatile修饰的变量,JVM虚拟机只是保证从主内存加载到线程工作内存的值是最新的。
一句话说明volatile的作用:实现变量在多个线程之间的可见性。
synchronized和lock区别:
1)Lock是一个接口,而synchronized是Java中的关键字,synchronized是内置的语言实现;
2)synchronized在发生异常时,会自动释放线程占有的锁,因此不会导致死锁现象发生;而Lock在发生异常时,如果没有主动通过unLock()去释放锁,则很可能造成死锁现象,因此使用Lock时需要在finally块中释放锁;
3)Lock可以让等待锁的线程响应中断,而synchronized却不行,使用synchronized时,等待的线程会一直等待下去,不能够响应中断;
4)通过Lock可以知道有没有成功获取锁,而synchronized却无法办到。
5)Lock可以提高多个线程进行读操作的效率(读写锁)。
在性能上来说,如果竞争资源不激烈,两者的性能是差不多的,而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况选择。
最后
大家看完有什么不懂的可以在下方留言讨论.
谢谢你的观看。
觉得文章对你有帮助的话记得关注我点个赞支持一下!
作者:小林啊
链接:https://juejin.cn/post/6907145922757525512
如何自学黑客&网络安全
黑客零基础入门学习路线&规划
初级黑客
1、网络安全理论知识(2天)
①了解行业相关背景,前景,确定发展方向。
②学习网络安全相关法律法规。
③网络安全运营的概念。
④等保简介、等保规定、流程和规范。(非常重要)
2、渗透测试基础(一周)
①渗透测试的流程、分类、标准
②信息收集技术:主动/被动信息搜集、Nmap工具、Google Hacking
③漏洞扫描、漏洞利用、原理,利用方法、工具(MSF)、绕过IDS和反病毒侦察
④主机攻防演练:MS17-010、MS08-067、MS10-046、MS12-20等
3、操作系统基础(一周)
①Windows系统常见功能和命令
②Kali Linux系统常见功能和命令
③操作系统安全(系统入侵排查/系统加固基础)
4、计算机网络基础(一周)
①计算机网络基础、协议和架构
②网络通信原理、OSI模型、数据转发流程
③常见协议解析(HTTP、TCP/IP、ARP等)
④网络攻击技术与网络安全防御技术
⑤Web漏洞原理与防御:主动/被动攻击、DDOS攻击、CVE漏洞复现
5、数据库基础操作(2天)
①数据库基础
②SQL语言基础
③数据库安全加固
6、Web渗透(1周)
①HTML、CSS和JavaScript简介
②OWASP Top10
③Web漏洞扫描工具
④Web渗透工具:Nmap、BurpSuite、SQLMap、其他(菜刀、漏扫等)
恭喜你,如果学到这里,你基本可以从事一份网络安全相关的工作,比如渗透测试、Web 渗透、安全服务、安全分析等岗位;如果等保模块学的好,还可以从事等保工程师。薪资区间6k-15k
到此为止,大概1个月的时间。你已经成为了一名“脚本小子”。那么你还想往下探索吗?
如果你想要入坑黑客&网络安全,笔者给大家准备了一份:282G全网最全的网络安全资料包评论区留言即可领取!
7、脚本编程(初级/中级/高级)
在网络安全领域。是否具备编程能力是“脚本小子”和真正黑客的本质区别。在实际的渗透测试过程中,面对复杂多变的网络环境,当常用工具不能满足实际需求的时候,往往需要对现有工具进行扩展,或者编写符合我们要求的工具、自动化脚本,这个时候就需要具备一定的编程能力。在分秒必争的CTF竞赛中,想要高效地使用自制的脚本工具来实现各种目的,更是需要拥有编程能力.
如果你零基础入门,笔者建议选择脚本语言Python/PHP/Go/Java中的一种,对常用库进行编程学习;搭建开发环境和选择IDE,PHP环境推荐Wamp和XAMPP, IDE强烈推荐Sublime;·Python编程学习,学习内容包含:语法、正则、文件、 网络、多线程等常用库,推荐《Python核心编程》,不要看完;·用Python编写漏洞的exp,然后写一个简单的网络爬虫;·PHP基本语法学习并书写一个简单的博客系统;熟悉MVC架构,并试着学习一个PHP框架或者Python框架 (可选);·了解Bootstrap的布局或者CSS。
8、超级黑客
这部分内容对零基础的同学来说还比较遥远,就不展开细说了,附上学习路线。
网络安全工程师企业级学习路线
如图片过大被平台压缩导致看不清的话,评论区点赞和评论区留言获取吧。我都会回复的
视频配套资料&国内外网安书籍、文档&工具
当然除了有配套的视频,同时也为大家整理了各种文档和书籍资料&工具,并且已经帮大家分好类了。
一些笔者自己买的、其他平台白嫖不到的视频教程。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
n/img_convert/153b2778a3fe5198265bed9635d63469.webp?x-oss-process=image/format,png)
一些笔者自己买的、其他平台白嫖不到的视频教程。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!