最新通用的AGI 安全风险(3),2024年最新手把手教你在网络安全-Studio上分析内存泄漏

给大家的福利

零基础入门

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

同时每个成长路线对应的板块都有配套的视频提供:

在这里插入图片描述

因篇幅有限,仅展示部分资料

网络安全面试题

绿盟护网行动

还有大家最喜欢的黑客技术

网络安全源码合集+工具包

所有资料共282G,朋友们如果有需要全套《网络安全入门+黑客进阶学习资源包》,可以扫描下方二维码领取(如遇扫码问题,可以在评论区留言领取哦)~

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以点击这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

(2)训练数据不合规风险

如果为了节省成本,对采集的数据不清洗或清洗不彻底,滥用、误用低质量、不完整的数据,导致输出不良信息,引发监管处罚。

模型可靠性风险

  • 数据源污染
  • 模型鲁棒性缺乏
  • 算法的黑箱性
  • 算法的偏见性

数据源污染

(1)训练数据不可控

例如采集数据未清洗、清洗不到位,或者直接使用不可信第三方数据源。

(2)训练数据特殊性,导致模型效率低下

由于大模型神经网络训练和推理需要使用高耗能的GPU和 TPU等加速硬件,如果用于训练数据是一些特殊样本,如海绵样本,可造成大模型性能极低。

(3)数据源中被植入毒化数据、后门数据

攻击者可在污染数据源中植入毒化数据、后门数据,从而导致大模型的决策偏离预期,甚至攻击者可在不破坏模型原来准确率的同时入侵模型,使大模型在后续应用过程中做出符合攻击者预期的决策。

模型鲁棒性缺乏

(1)训练数据无法覆盖所有情况

大模型训练需要完整的数据集,而训练数据往往无法覆盖到真实世界的各种异常场景,导致对于训练中未出现的、真实世界的各种异常输入,大模型无法做出准确的判断与决策。

(2)攻击者添加干扰噪声

攻击者可在输入样本中添加细微到人眼无法识别的干扰噪声,从而在不引起注意的情况下,导致系统做出偏离预期的错误决策。

(3)攻击者输入伪造信息

攻击者伪造具备个体唯一性特征的信息(指纹、虹膜、面容等),并作为智能身份认证系统的输入,实现伪造攻击。

算法的黑箱性

(1)算法结构隐层

AGI 核心基础为深度学习,其算法结构存在多个隐层,导致输入与输出之间存在人类难以理解的因果关系、逻辑关系。

(2)算法模型自适应、自学习性等

具有自适应、自学习等特性,复杂程度超过人类大脑理解范畴,造成不可解释性,给人工智能安全事件的溯源分析带来了严峻挑战。

算法的偏见性

(1)本身无判断能力

人工智能模型算法追求的是统计的最优解,本身并不具备客观公正的判断能力。

(2)价值判断具有地域、文化性

模型对于价值的判断完全依赖于训练数据,而伦理、道德、政治等复杂问题本身具有地域、文化特性。

滥用、误用风险

  • 危害社会稳定
  • 降低企业创造积极性
  • 侵犯个人基本权益
  • 危害网络空间安全

危害社会稳定

(1)生成虚假信息、负面信息

混淆视听、左右公众舆论,甚至改变热点事件、政治事件的舆论走向,给社会带来不稳定因素。

(2)深度伪造

制作虚假负面音频、视频等信息,严重扰乱社会正常秩序,并可用于欺诈、诈骗等违法犯罪活动。

降低企业创造积极性

部分大模型的训练数据采集自公开数据,再加上版权保护法律的普遍滞后,新的人工智能创造物未得到法律有力保护,将严重影响企业投入人工智能创造的积极性。

侵犯个人基本权益

(1)个人隐私权益被侵犯

各种人工智能应用使用场景并未得到严格的规范与限制,滥用人工智能技术大量采集用户的隐私信息,如指纹、人脸、虹膜等信息。

(2)个人人格尊严被侵犯

创建虚假人工智能聊天机器人,用于进行网络欺诈或社交工程攻击,获取个人敏感信息或诱导用户进行不恰当的行为。

(3)个人基本权益被侵犯

大模型设计、训练之初误用或滥用包含非客观公正、带歧视性的训练数据,大模型的偏见性输出很有可能给用户带来情感上的伤害。

危害网络空间安全

(1)被广泛应用于网络攻击各个环节

例如,ChatGPT 可用于快速收集目标资产信息,生成并发送大量钓鱼邮件,也能基于目标资产指纹快速发现 NDay 漏洞,甚至可以通过扫描开源代码、泄露的代码自动检测到 0Day 漏。

(2)自动构建漏洞利用代码

基于大规模语言的预训练模型还能根据漏洞原理自动构建漏洞利用代码,从而实现快速入侵目标系统。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以点击这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值