一、 什么是大模型?
大模型,英文名叫Large Model,大型模型。早期的时候,也叫Foundation Model,基础模型。
大模型是一个简称。完整的叫法,应该是“人工智能预训练大模型”。预训练,是一项技术,我们后面再解释。
我们现在口头上常说的大模型,实际上特指大模型的其中一类,也是用得最多的一类——语言大模型(Large Language Model,也叫大语言模型,简称LLM)。
除了语言大模型之外,还有视觉大模型、多模态大模型等。现在,包括所有类别在内的大模型合集,被称为广义的大模型。而语言大模型,被称为狭义的大模型。

从本质来说,大模型,是包含超大规模参数(通常在十亿个以上)的神经网络模型。
之前给大家科普人工智能的时候,介绍过,神经网络是人工智能领域目前最基础的计算模型。它通过模拟大脑中神经元的连接方式,能够从输入数据中学习并生成有用的输出。

这是一个全连接神经网络(每层神经元与下一层的所有神经元都有连接),包括1个输入层,N个隐藏层,1个输出层。
大名鼎鼎的卷积神经网络(CNN)、循环神经网络(RNN)、长短时记忆网络(LSTM)以及transformer架构,都属于神经网络模型。
目前,业界大部分的大模型,都采用了transformer架构。
刚才提到,大模型包含了超大规模参数。实际上,大模型的“大”,不仅是参数规模大,还包括:架构规模大、训练数据大、算力需求大。

以OpenAI公司的GPT-3为例。这个大模型的隐藏层一共有96层,每层的神经元数量达到2048个。
整个架构的规模就很大(我可画不出来),神经元节点数量很多。
大模型的参数数量和神经元节点数有一定的关系。简单来说,神经元节点数越多,参数也就越多。例如,GPT-3的参数数量,大约是1750亿。
大模型的训练数据,也是非常庞大的。
同样以GPT-3为例,采用了45TB的文本数据进行训练。即便是清洗之后,也有570GB。具体来说,包括CC数据集(4千亿词)+WebText2(190亿词)+BookCorpus(670亿词)+维基百科(30亿词),绝对堪称海量。
最后是算力需求。
这个大家应该都听说过,训练大模型,需要大量的GPU算卡资源。而且,每次训练,都需要很长的时间。
根据公开的数据显示,训练GPT-3大约需要3640PFLOP·天(PetaFLOP·Days)。如果采用512张英伟达的A100 GPU(单卡算力195 TFLOPS),大约需要1个月的时间。训练过程中,有时候还会出现中断,实际时间会更长。
总而言之,大模型就是一个虚拟的庞然大物,架构复杂、参数庞大、依赖海量数据,且非常烧钱。
相比之下,参数较少(百万级以下)、层数较浅的模型,是小模型。小模型具有轻量级、高效率、易于部署等优点,适用于数据量较小、计算资源有限的垂直领域场景。
为了帮助初学者快速跟上大模型的趋势,今天给大家分享一份由字节内部培训的《大模型落地应用案例集》,它是一本详细解析大模型在各领域应用现状和发展趋势的书籍。该书通过收集和整理大量的实际应用案例,为我们提供了大模型在实际业务中应用的宝贵参考,它收录了52个优秀的大模型落地应用案例。这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,充分展示了大模型技术在各个行业中的广泛应用前景。
总的来说无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中
如何应用的业内人士,都具有很高的参考价值
这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费】
话不多说,直接来展示:
第一章、通用大模型
-
基于人工智能大模型技术的开放平台
-
可控可信的私域知识问答系统
-
MiniMax 大模型医疗咨询解决方案
-
言犀基础大模型
-
国内首款可私有化部署的企业级数据分析智能体——TableAgent
-
九章云极知识管家打造企业专属大模型智能底座
-
“Pixeling 千象”
-
书生筑梦视频生成大模型
-
书生浦语开源大模型
-
百川大模型在娱乐领域的应用
-
AnimateDiff :一项基于个性化文生图模型扩展后的视频生成框架
-
通义千问 2.0 在企业场景的应用
-
昆仑万维“天工”大模型

第二章、垂类大模型
- 梧桐·招聘 - 基于百度智能云千帆大模型平台的智能招聘系统
- 面向游戏行业的图像内容生成式大模型
- 中公网校:小鹿老师,为年轻人创造更多就业与成长机会
- 新华妙笔 AI
- 小布助手
- ChatDD 新一代对话式药物研发助手
- 大模型数据分析智能助理 DeepInsight Copilot
- 单晶炉自动化工艺识别多模态大模型
- 基于 NDAI 大模型的政务元宇宙平台
- 慧政大模型——面向政务服务垂直大模型
- 基于循道政务大模型的免申即享系统示范应用
- 东方财富自研金融大模型
- 基于大模型的信息结构化抽取方法
- 天津金城银行金融大模型示范应用
- 文修大模型助力中文校对提质增效
- 新型金融风险防范可信金融大模型
- 信阳市智慧工业平台
- 遥感大模型在农业信贷场景的应用
- 中国金茂人工智能大模型企业内部场景应用
- 中山大学附属医院智慧医院项目
- 阿斯利康:基于学术文献溯源的药品不良反应报告生成助手
- 基于知识图谱和大语言模型的制造业数字化转型平台
- 东方翼风大模型
- 智己汽车:用大模型打造智能时代出行变革者
- 基于山下话童大模型的贷后催收示范应用
- 海淀区一网统管接诉即办工程项目
- 风乌气象大模型
- 基于大模型的智能培训
- 面向围手术期的医专大模型研究及其落地应用
- 通过大语言模型与材料领域技术文件集合对原材料质保书进行智能审查
- 智能投顾助手——光子·善策

第三章、垂类大模型
- 支小助 - 大模型金融专家智能助理
- AGI 云上模型服务平台
- 蚂蚁集团大模型数据高质量供给平台
- 基于大模型的壹沓数字员工超自动化平台
- 云原生大模型知识库平台
- 众调科技:营销 AI 培训产品
- 信息安全大模型平台
- 全自研 AI 整合平台“HeyLisa”

这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费】
一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)






第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费】

381

被折叠的 条评论
为什么被折叠?



