AI遮天传 DL-深度学习在计算机视觉中的应用_深度学习中的感兴趣区域

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

本文只做一些在计算机视觉中应用的简单介绍,童叟无欺。


一、图像分类

a. 通用图像分类

将不同图片按照内容进行分类

b. 特定图像分类

特定识别人脸、某种动物、汽车等

1.1 人脸验证

下面是两种典型的人脸识别损失函数

1.1.1 DeepID2

上图左侧两个人比较像,都是侧脸,所以箭头短一点,下方一个是侧脸一个是正脸,而且光照也不相同,所以箭头长一点。我们希望经过训练后,上方的两张图片离得远一点(因为这是两个不同的人),而下方的图片近一些(同一个人)。

目标:当i,j身份相同时,||f(x_{i})-f(x_{j}))||_{2}^{2} 足够小,否则 ||f(x_{i})-f(x_{j}))||_{2}^{2}>a  其中 a>0

损失:L(x_{i},x_{j},y_{ij},\theta )=\left{\begin{matrix} \frac{1}{2}||f(x_{i})-f(x_{j}))||_{2}^{2} & ,y_{ij}=1\\frac{1}{2}max\begin{Bmatrix} 0,, a-||f(x_{i})-f(x_{j}))||_{2}^{2} \end{Bmatrix} & ,else\end{matrix}\right.

(一个minibatch至 少包含2个样本,y_{ij}为标签。)

1.1.2 FaceNet

随计算一个人得图片做为Anchor,然后选择和他同一个人的图片和不同的人的图片做训练。 其它同上。

目标:||f(x_{i}{a})-f(x_{i}{p}))||_{2}{2}+a<||f(x_{i}{a})-f(x_{i}{n}))||_{2}{2}  其中 a>0

损失:\sum_{i}{N}[||f(x_{i}{a})-f(x_{i}{p}))||_{2}{2}-||f(x_{i}{a})-f(x_{i}{n}))||_{2}^{2}+a]_{+}

(一个minibatch至 少包含3个样本)

1.1.3 人脸验证的其它损失函数
  • SphereFace: Deep Hypersphere Embedding for Face Recognition, CVPR 2017
  • NormFace: L2 Hypersphere Embedding for Face Verification, ACM MM 2017
  • ArcFace: Additive Angular Margin Loss for Deep Face Recognition, CVPR 2019

二、物体检测

任务:找出图片中的物体和每个物体所在的位置。

怎么做这个任务?

找到包含物体的区域,用一个多分类器进行物体分类

怎么知道哪些区域包含物体?

找到很多候选区域,用一个二分类器进行区域分。

2.1 候选区域(Region Proposals)

指可能包含物体的区域、感兴趣区域 (Region of interest, ROI)。

挑选候选区域的多种选择

2.1.1 (C+1)-类的分类

上面提到简单检测物体的思路:

  1. 找到很多候选区域,用一个二分类器进行区域分类。
  2. 找到包含物体的区域,用一个多分类器(Softmax、SVM等)进行物体分类。

另外一种方法:

  • 设有C个类别,加一个“背景”类
    • 对每个区域用一个多分类器进行(C+1)-类的分类
    • 对每个区域用(C+1)个二分类器进行分类
2.1.2 R-CNN

把每个候选框的图片剪贴出来,变成相同尺寸,经过一个同样的CNN进行一个二分类。这里用的上面提到的C+1类方法。SVM解决二分类问题。至于Bbox reg 用于解决回归问题,坐标定位。

步骤:

  1. 训练(或下载)ImageNet分类模型(如AlexNet)
  2. 针对检测微调(fine-tune)
  3. 提取特征
  4. 每个类别训练一个二分类SVM来为候选区域的特征进行分类
  5. 对每个类别,训练一个线性回归模型,将特征映射到一组偏移量,用以校正那些稍微有些误 差的候选区域

R-CNN有什么问题吗?

测试慢

  • 需要对每个ROI跑一个完整的CNN前向过程。

非“端到端”过程

  • 找候选区域, SVM和回归器基于CNN的特征进行处理。
  • SVM和回归器不能更新CNN的特征。

更好的想法?

先在整张图上跑一个CNN的前向过程,然后将每个ROI映射到特征图上。

2.1.3 Fast R-CNN

即先把整张图做一个神经网络,先把特征取好,想要什么特征就取什么特征。

感兴趣区域池化(RoI Pooling)

可见上面提取的图片大小是不同的,这里做一下池化。

结果:

Fast R-CNN问题:

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

67216745)]

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值