Binder“一次拷贝“你真懂吗?_binder一次拷贝发生在什么时候

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新HarmonyOS鸿蒙全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img

img
img
htt

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上鸿蒙开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip204888 (备注鸿蒙)
img

正文

status_t IPCThreadState::talkWithDriver(bool doReceive)
{

binder_write_read bwr;

bwr.write_size = outAvail;
bwr.write_buffer = (uintptr_t)mOut.data();

bwr.write_consumed = 0;

ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0

}

这里又包了一层,bwr。其中bwr.write_buffer保存了指向mOut.data()的指针。在这里也就是指向了tr。
所以在发起方:

  • bwr含有指向tr的指针。
  • tr含有指向data的指针。

记住上面两点,接下来我们看一下内核空间是怎么取包的:

发起方内核空间
binder_ioctl_write_read

static int binder_ioctl_write_read(struct file *filp,
unsigned int cmd, unsigned long arg,
struct binder_thread **threadp)
{ …
void __user *ubuf = (void __user *)arg;
struct binder_write_read bwr;

if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {
ret = -EFAULT;
goto out;
}

ret = binder_thread_write(proc, *threadp,
bwr.write_buffer,
bwr.write_size,
&bwr.write_consumed);
}

这里我们遇到了第一个copy_from_user()调用。这个调用会把用户空间的bwr给拷贝到内核空间。但是要注意,copy_from_user()的第一个入参是拷贝的目标地址,这里给的是&bwr,函数内部的一个结构体。显然此处和内存映射没有关系。接下来就进入binder_thread_write。入参有bwr.write_buffer,回头看用户空间最底层那里,指向的是不是tr?

binder_thread_write

static int binder_thread_write(struct binder_proc *proc,
struct binder_thread *thread,
binder_uintptr_t binder_buffer, size_t size,
binder_size_t *consumed)
{
void __user *buffer = (void __user *)(uintptr_t)binder_buffer;
void __user *ptr = buffer + *consumed;

case BC_TRANSACTION:
case BC_REPLY: {
struct binder_transaction_data tr;

if (copy_from_user(&tr, ptr, sizeof(tr)))
return -EFAULT;
ptr += sizeof(tr);
binder_transaction(proc, thread, &tr,
cmd == BC_REPLY, 0);
break;
}

}

这里我们遇到了第二个copy_from_user()。这回会把用户空间的那个tr,也就是IPCThreadState.mOut,给拷贝到内核中来,看它的第一个入参,还是和内存映射没有关系。接下来就进入关键的binder_transaction()了。

binder_transaction

static void binder_transaction(struct binder_proc *proc,
struct binder_thread *thread,
struct binder_transaction_data *tr, int reply,
binder_size_t extra_buffers_size)
{

struct binder_transaction *t;

t->buffer = binder_alloc_new_buf(&target_proc->alloc, tr->data_size,
tr->offsets_size, extra_buffers_size,
!reply && (t->flags & TF_ONE_WAY));

copy_from_user(t->buffer->data, (const void __user *)(uintptr_t)
tr->data.ptr.buffer, tr->data_size)

off_start = (binder_size_t *)(t->buffer->data +
ALIGN(tr->data_size, sizeof(void *)));
offp = off_start;

copy_from_user(offp, (const void __user *)(uintptr_t)
tr->data.ptr.offsets, tr->offsets_size);

}

首先看一下t->buffer,函数binder_alloc_new_buf()的返回值会赋值给它,这里是我们第一次见到这个函数,从名字看是分配内存,看它的第一个入参&target_proc->alloc。现在回想前面说mmap的时候提到内存映射的信息会保存到proc->alloc这个结构体中。所以这里我们就可以确定现在是在接收方进程的内存映射中分配了一块内存出来。t->buffer就指向这块有映射的内存。

接下来就是我们遇到的第三次copy_from_user()调用了。回想在用户空间的时候tr.data.ptr.buffer是指向我们要传输的数据的。所以这里可以看到这个copy_from_user()的操作就是把发起方用户空间的数据直接拷贝到了接收方内核的内存映射中。 这就是所谓“一次拷贝”的关键点。

紧接着还有一个copy_from_user()调用,这里拷贝的是和数据相关的一些跨境程对象的偏移量,和前面拷贝bwrtr在体量上来讲与数据的体量相比不是主要矛盾,所以说“一次拷贝”指的就是上面对数据的拷贝。

至此关于“一次拷贝”这个问题我们应该是已经有了初步的答案了,但为了让整个过程形成个闭环,接下来我们再来看一下Binder传输过程的后半段。

接收方内核空间
binder_thread_read

static int binder_thread_read(struct binder_proc *proc,
struct binder_thread **threadp,
binder_uintptr_t binder_buffer, size_t size,
binder_size_t *consumed, int non_block)
{

void __user *buffer = (void __user *)(uintptr_t)binder_buffer;
void __user *ptr = buffer + *consumed;

tr.data_size = t->buffer->data_size;
tr.offsets_size = t->buffer->offsets_size;
tr.data.ptr.buffer = (binder_uintptr_t)
((uintptr_t)t->buffer->data +
binder_alloc_get_user_buffer_offset(&proc->alloc));
tr.data.ptr.offsets = tr.data.ptr.buffer +
ALIGN(t->buffer->data_size,
sizeof(void *));

copy_to_user(ptr, &tr, sizeof(tr));

}

这里我们遇到了第一个copy_to_user()调用,这是把tr给拷贝到接收方的用户空间的IPCThreadState.mIn。在此之前把内核映射的数据地址指针转换为用户空间的指针赋值给tr.data.ptr.buffer

binder_ioctl_write_read

static int binder_ioctl_write_read(struct file *filp,
unsigned int cmd, unsigned long arg,
struct binder_thread **threadp)
{

copy_to_user(ubuf, &bwr, sizeof(bwr));

}

最后我们遇到了第二个copy_to_user()。把bwr又拷贝回用户空间了,注意此时bwr内包含指向tr的指针。也就是bwr.read_buffer是指向这个tr,或者说IPCThreadState.mIn

接收方用户空间

接下来就回到接收方的用户空间了:

IPCThreadState::executeCommand

status_t IPCThreadState::executeCommand(int32_t cmd)
{

case BR_TRANSACTION:
{
binder_transaction_data tr;
result = mIn.read(&tr, sizeof(tr));

Parcel buffer;
buffer.ipcSetDataReference(
reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
tr.data_size,
reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
tr.offsets_size/sizeof(binder_size_t), freeBuffer, this);

error = reinterpret_cast<BBinder*>(tr.cookie)->transact(tr.code, buffer, &reply, tr.flags);
}

}

这里首先把trmIn里面读出来。然后就直接就把内存映射过来的指针tr.data.ptr.buffer,也就是那“一次拷贝”过来的地址,设置给buffer这个Parcel。这样下面的实体Binder就可以调用transact来处理发起方传过来的数据了。到这里应该明白最前面做mmap的那个注释了吧,内存映射确实只是用来接收Binder传输过来的数据的。

总结

对Binder“一次拷贝”的两个问题(什么时候拷贝和拷贝的是什么东西),相信大家已经有了一个初步的了解。这里我用一张图来总结一下上面介绍的内容:

总结

图中表示了文中所讲的关键的copy_from_usercopy_to_user。斜着的那个绿色箭头就是“一次拷贝”所在之处。右侧接收方的两个绿色块代表内存映射。

关于对“一次拷贝”的理解以及内存映射在Binder通信中的作用如果不仔细去研究的话很容易被Binder驱动源码里那么多的copy_from_usercopy_to_user调用给搞混了。但是研究透了以后这个机制其实并不复杂。希望这篇文章能帮到大家。


所以为了帮助到大家更好的了解Android Framework框架中的知识点,这边查阅大量的素材,整理了一下的 Android Framework 核心知识点手册,里面记录了:有Handler、Binder、AMS、WMS、PMS、事件分发机制、UI绘制……等等,几乎把更Framework相关的知识点全都记录在册了

《Framework 核心知识点汇总手册》:https://qr18.cn/AQpN4J

Handler 机制实现原理部分:
1.宏观理论分析与Message源码分析
2.MessageQueue的源码分析
3.Looper的源码分析
4.handler的源码分析
5.总结

Binder 原理:
1.学习Binder前必须要了解的知识点
2.ServiceManager中的Binder机制
3.系统服务的注册过程
4.ServiceManager的启动过程
5.系统服务的获取过程
6.Java Binder的初始化
7.Java Binder中系统服务的注册过程

Zygote :

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注鸿蒙)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

b8cc4eaa75c38e382fe406.png)

Zygote :

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注鸿蒙)
[外链图片转存中…(img-uV64KNYV-1713274440075)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值