tableEnv.fromDataStream(ecommerceLogDstream,’mid,’uid .......)
最后的动态表可以转换为流进行输出
table.toAppendStream[(String,String)]
2.2 字段
用一个单引放到字段前面来标识字段名, 如 ‘name , ‘mid ,’amount 等
三、Table API 的窗口聚合操作
3.1 通过一个例子了解Table API
//每 10 秒中渠道为 appstore 的个数
def main(args: Array[String]): Unit = {
//sparkcontext
val env: StreamExecutionEnvironment =
StreamExecutionEnvironment.getExecutionEnvironment
//时间特性改为 eventTime
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
val myKafkaConsumer: FlinkKafkaConsumer011[String] =
MyKafkaUtil.getConsumer("ECOMMERCE")
val dstream: DataStream[String] = env.addSource(myKafkaConsumer)
val ecommerceLogDstream: DataStream[EcommerceLog] = dstream.map{ jsonString
=>JSON.parseObject(jsonString,classOf[EcommerceLog]) }
//告知 watermark