这个我是通过pyqt来设计了一个简单的GUI界面,配置pyqt环境我在我之前的一篇博客介绍过了——pyqt的介绍
使用了两个简单的button来进行一个可视化。
项目代码
====
人脸采集
import numpy as np
import cv2
def b():
print(‘正在调用摄像头!’)
faceCascade = cv2.CascadeClassifier(‘haarcascade_frontalface_default.xml’)
cap = cv2.VideoCapture(0)
cap.set(3,640) # set Width
cap.set(4,480) # set Height
while True:
ret, img = cap.read()
#将彩色图转为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.2,
minNeighbors=5
,
minSize=(20, 20)
)
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
cv2.imshow(‘video’,img)
k = cv2.waitKey(30) & 0xff
if k == ord(‘s’):
n = input(‘请输入编号:’)
cv2.imwrite(‘./data/jm/’+n+‘.jpg’,roi_gray)
if k == 27: # press ‘ESC’ to quit
break
cap.release()
cv2.destroyAllWindows()
b()
数据训练
import os
import cv2
import sys
from PIL import Image
import numpy as np
def getImageAndLabels(path):
facesSamples=[]
ids=[]
imagePaths=[os.path.join(path,f) for f in os.listdir(path)]
#检测人脸
face_detector = cv2.CascadeClassifier(‘haarcascade_frontalface_alt2.xml’)
#打印数组imagePaths
print(‘数据排列:’,imagePaths)
#遍历列表中的图片
for imagePa