最后
🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
2、通过建立综合分数指标的计算公式来挑选出最适合地址。
读取数据集后,通过info()和describe()方法来查看一下数据的基本情况。
data.info()
——————————————————————————
<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 96398 entries, 0 to 96397
Data columns (total 10 columns):
类别 96258 non-null object
行政区 96255 non-null object
点评数 96398 non-null int64
口味 96398 non-null float64
环境 96398 non-null float64
服务 96398 non-null float64
人均消费 96398 non-null int64
城市 96398 non-null object
Lng 96398 non-null float64
Lat 96398 non-null float64
dtypes: float64(5), int64(2), object(3)
memory usage: 7.4+ MB
数据共计96398个,10个变量/特征,数据类型数量为 float64(5), int64(2), object(3),粗略观察,数据明显有缺失值的情况,需要进行数据的清洗。
使用data.isnull().values.sum()检查空值数量,检查出283个空值。
由于空值占数据总量比例为283/96398 = 0.0029,删除空值并不影响整体的数据情况,所以这里采用删除的办法来处理空值。
使用data.dropna()对空值进行删除,再使用data.isnull().values.sum()进行检查,结果为0。
数据清洗后的数据共计96255个。根据①通过餐饮数据分析选出最具有竞争力的品类的要求,选择相关的变量,选择[‘类别’, ‘口味’, ‘环境’, ‘服务’, '人均消费’]5个变量。
建立[‘类别’, ‘口味’, ‘环境’, ‘服务’, '人均消费’]的DataFrame,并且筛选出所有评分和消费大于0的情况。因为根据实际情况,评分和消费为0的数据对此没有参考作用。
引入’性价比’这一列,性价比的计算方式将所有的评分相加再除以人均消费金额,计算出 分/元 为单位的数值,表示单位价格获得的分数 来表示其性价比。
这样获得了df如下,筛选出了需要的数据54886个。
df.info()
——————————————————————————
<class ‘pandas.core.frame.DataFrame’>
Int64Index: 54886 entries, 0 to 96395
Data columns (total 6 columns):
类别 54886 non-null object
口味 54886 non-null float64
环境 54886 non-null float64
服务 54886 non-null float64
人均消费 54886 non-null int64
性价比 54886 non-null float64
dtypes: float64(4), int64(1), object(1)
memory usage: 2.9+ MB
构建模型
得到数据集df,选择’类别’进行groupby分组再进行mean值等到每个类别的值。
使用箱型图进行异常值的排查。
箱型图使用异常值删除的函数,对异常值进行删除。
构建一个选择具有竞争力的品类的公式的因素,例如’口味’,'人均消费’,‘性价比’,然后通过异常值删除的函数得出数据集。
将三组数据集放在同一张图上面。
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。
别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。
我先来介绍一下这些东西怎么用,文末抱走。
(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
(4)200多本电子书
这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。
基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。
(5)Python知识点汇总
知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。
(6)其他资料
还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。
这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!