基于STM8S103F3P6的超声波测距仪设计_interface stm8s103f3p6 with hc-sr-04

常用的非接触式测距的方法有红外线、激光、超声波等 1^ 。红外测距的优点是安全、便宜、缺点是精度不够高、且方向性差。激光测距精度虽较高,而且操作相对简单,但后期维护麻烦、并且易受环境影响 6] ;将超声波利用在测距上有许多优点。超声波指向性好,可在空气、液体或固体中传播,在介质中的传播速度比较恒定;传播时间较长,易于检测往返时间;电磁波对其影响小;对光线敏感度小,可在工作没有光线和空气混浊等恶劣环境;超声波传感器已有许多集成方案、结构简单、成本低,使用方便 [7] 。所以超声波测距得到更多人们的重视,被广泛运用于各个需要测距识别的场合,遍布各行业领域与日常生活。例如,液位测量、机器人避障、建筑测量、自动化加工装配、汽车倒车等领域 [8] 。

面对多元的市场需求以及精益求精的测量性能要求,如何打破许多实际应用的局限性和提高测距精度、减小测量盲区是当前超声波测距设备研究的重点所在。本设计MCU选用功耗低、体积小、性价比高、频率高(最高可达24MHz)的STM8系列芯片 [9] 。使用MCU内部的定时器计时,更准确的捕捉超声波传播时间,并添加温度补偿等以提高测距精度 [10] 。体积小、结果显示直观等特点更适用于各种场合。

1.2 设计的主要任务

本毕业设计的主要任务是设计一款以STM8单片机为核心的用于测量距离的超声波测距仪,测量距离在5cm到400cm、精度为1cm,测量结果可以显示在OLED屏幕上;并可以通过蜂鸣器、LED灯提示预警,此外还可以通过按键控制预设预警值;加入温度传感器测量实时温度,用软件进行温度补偿,以提高测量精度。主要完成的工作有阅读相关文献,查找一些参考资料,分析现有产品的优缺点。根据设计要实现的功能确定出大概的硬件框架,自学Altium Designer软件后绘制本设计的原理图、LAYOUT,打板焊接元件,测试硬件无误后开始编写、调试、优化程序。最后测试实物性能数据并总结分析。论文各章节安排如下:第一章绪论介绍了设计研究内容、背景及意义,介绍了设计的主要研究内容以及完成了哪些工作,第二章简单介绍了超声波的一些基本理论和测距的基本理论;介绍设计的总体框架和介绍主要器件特性。第三章详细地介绍与分析设计的硬件电路,第四章介绍程序的设计。第五章介绍了对设计出的实物进行调试,对遇到的问题的解决方法以及测试结果,第六章是对整个设计的总结与展望。

2 超声波测距基本理论及总体架构

2.1 基本知识

2.1.1 超声波特性

超声波是频率高于20KHZ的声波,物质振动产生声波,声波的传输需要介质。超声波属于声波,所以也具有声波传播时反射、折射、衍射等基本物理特性。而且传播时也具有良好的束射性、方向性;具有穿透性强、衰减小、反射能力强的特点 [11] 。

按照质点振动方向与波的传播方向超声波可分为纵波和横波,横波只可以在固体介质中传播。固体介质表面受到交替变化的表面张力作用时便会产生表面波,质点对应的进行纵横向的往复运动。质点振动产生的波动只能沿固体介质表面传播。

超声波传播的速度c,跟介质有很大关系。忽略空气中的灰尘悬浮物和水蒸气等的影响,超声波空气里传播的介质为气体,气体只能传播纵波。气压气温、环境湿度等因素会影响超声波的传播速度,其中温度的影响最大,一般情况下温度每变化1摄氏度,声速变化0.607m/s [12] 。几种不同温度下的声速如下表2-1所示。

表2-1 声速随温度变化表

温度(℃) -30 -20 -10 0 10 20 30 50
声速(m/s) 313.3 319.9 325.5 331.5 337.6 344.0 349.1 361.5

考虑温度对声速的影响,在空气介质中,超声波的传播速度c可修正为:

在这里插入图片描述

式中,T表示当前温度值,单位为摄氏度。

2.1.2 超声波传感器

超声传感器也叫超声换能器,按照原理可分为压电式、磁致伸缩式、电磁式等。压电式超声换能器的使用比较广泛。压电式超声波是利用逆压电效应产生超声波,而对超声波接收是利用正压电效应原理。

2.1.3 超声波测距原理

超声波测距有渡越时间检测法。相位检测法、声波幅值检测法等。相位检测法的原理将发送的超声波信号作为参考信号,将接收器的输入进行采样并跟参考信号进行比较,对比其峰值出现的时间点。目前使用这种方法测距的精度高,但算法程序较复杂,实时效果不好、测量范围有限。根据超声波在空气中传播会衰减的特性的原理,可以检测接受到的信号的幅值,对往返时间差做一个判断,这种方法抗干扰性差,测距精度不高。渡越时间检测法是通过检测发出信号与接收信号过程的时间差,并根据声速的传播速度去测量计算,这种工作方式软硬件都比较简单、成本价格低,可测量范围大。但渡越时间法在短距离范围内会有一定的盲区。

经综合考量,本设计选用渡越时间法作为测距方法。检测从发射传感器发射超声脉冲,经气体介质传播遇到物体被反射回来,并被另一只探头所接收超声波的时间差, 即渡越时间。测量原理图如下图2-1所示。

在这里插入图片描述

图2-1 渡越时间测量原理图

在这里插入图片描述

式中,S表示探头与测量目标的距离,c表示声速,t表示渡越时间。

又由图中可看出:

在这里插入图片描述

式中,L为测量距离。

如果S远大于d,则L约等于S。本设计的两探头的间距很小,可以忽略不计,所以测量距离L=S,这样就能检测距离了。

2.2 总体架构

2.2.1 设计原则

设计一个模块化的产品,要求在使用中安全、准确、稳定,同时也要易于维护更新。电源采用5V直流电源输入、功耗小、电流小,符合人体安全耐受值;设计选用时钟频率较高的MCU、考虑温度补偿、程序上用高精度算法等方面来减小误差,以确保设计的准确性;为了保证可以仪器的长期稳定运行,在设计中选用高于其需要参数的器件,在进行LAYOUT设计时,合理地排版布局排版和注意连线宽细,尽可能加粗电源线与地线的宽度,减少环路。PCB上大面积敷铜,考虑电路散热问题,在PCB

摘要:超声波测距是一种典型的非接触测量方式,应用非常广泛。本文提出了一种基于STM32单片机的高精度超声波测距方案。与传统单片机相比,STM32的主频和定时器的频率可以通过PLL倍频高达72MHz,高分辨率的定时器为高精度的测量提供了保证。超声波的发射使用定时器的PWM功能来驱动,回波信号的接收使用定时器的输入捕获功能,开始测距时,定时器的开启将同时启动PWM和输入捕获,完全消除了启动发射和启动计时之间的偏差,提高了测量精度。为使回波信号趋于稳定,设计了时间增益补偿电路(TGC),在等待回波的过程中随着时间的推移需要将放大器的增益值不断增大,通过实验获取不同距离需要设置的增益值,对应不同时间需要设置数字电位器的增量,并将该参数固化在单片机的FALSH中,在测距过程中,根据时间查询电位器增量表改变电位器阻值,实现回波信号的时间补偿,提高了测量的精度。为了在减小盲区的同时而不减小测量范围,设计了双比较器整形电路分别处理近、远距离的回波信号,近距离比较器可以有效屏蔽超声波衍射信号从而减小了测量盲区。传统的峰值检测方法大多通过硬件电路实现,设计较复杂,稳定性差。本文通过软件算法对回波信号进行峰值时间检测。不仅简化了电路,降低了成本,而且提高了系统的稳定度。经研究表明,该系统测量精度达到了lmm,盲区低至3cm,量程可达500cm。本系统在近距离测试时,系统的精度较理想,可作为停车时的倒车雷达使用,也可以用于液面检测(油箱液位),还可以用于自动门感应,机器人视觉识别等。如果多使用几个测距仪,将这些集成一个大系统,那么整个大系统可用于定位避障。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值