最大团问题

  1. 回溯算法
    def find_maximum_clique(graph):
        n = len(graph)
        vertices = list(range(n))
        max_clique = []
        print(n)
        print(vertices)
    
        def is_clique(current_clique):
            # 约束函数: 判断给定的顶点集合是否构成一个团(完全子图)
            for i in range(len(current_clique)):
                for j in range(i + 1, len(current_clique)):
                    if not graph[current_clique[i]][current_clique[j]]:
                        return False
    
            return True
    
        #def bound(current_clique, vertices):
            # 限界函数
            return len(current_clique) + len(vertices)
    
        def backtrack(vertices, current_clique):
            nonlocal max_clique
    
            if not vertices:
                if len(current_clique) > len(max_clique):
                    #max_clique.clear()
                    #max_clique.extend(current_clique)
                    max_clique=current_clique[:]   #复制
                return
    
            #vertex = vertices.pop(0)
            #current_clique.append(vertex)
    
            #neighbors = []
            #for v in vertices:
                if graph[vertex][v]:
                    neighbors.append(v)
    
            # 选择当前顶点并加入团
            #if is_clique(current_clique):
                #backtrack(neighbors, current_clique)
    
            # 恢复回溯前状态
            #current_clique.pop()
    
            # 不选择当前顶点
            #if bound(current_clique, vertices) > len(max_clique):
                #backtrack(vertices, current_clique)
            for vertex in vertices:
                current_clique.append(vertex)
                neighbors=[v for v in vertices if graph[vertex][v]]
                if is_clique(current_clique):
                    backtrack(neighbors,current_clique)
                current_clique.pop()  #恢复回溯前的状态
       
        backtrack(vertices, [])
    
        return max_clique
    
    #无向图邻接矩阵
    graph= [
        [0, 1, 0, 1, 1],
        [1, 0, 1, 0, 1],
        [0, 1, 0, 0, 1],
        [1, 0, 0, 0, 1],
        [1, 1, 1, 1, 0]]
    maximum_clique = find_maximum_clique(graph)
    for i in range(len(maximum_clique)):
        maximum_clique[i]=maximum_clique[i]+1    
    print(f'最大团: {maximum_clique}')
  2. 灰狼优化算法
    import numpy as np
    import random
    #无向图邻接矩阵
    graph=np.array([[0,1,1,0,0],
                   [1,0,1,1,1],
                   [1,1,0,1,1],
                   [0,1,1,0,1],
                   [0,1,1,1,0]])
    def max_clique_GWO(graph):
        def fitness(solution):
            #获取解中值为1的索引
            subset = np.where(solution == 1)[0] 
            is_clique = all(graph[i][j] == 1 for i in subset for j in subset if i != j)  
            return len(subset) if is_clique else 0
        def grey_wolf_optimizer(graph, solution_size, wolf_size, max_iter):
        #生成随机数组,用于初始化狼群  
            wolves = np.random.randint(0, 2, (wolf_size, solution_size))  
            alpha_score, beta_score, delta_score = -np.inf, -np.inf, -np.inf 
            alpha=None
            beta=None
            delta=None
            for l in range(max_iter): 
                for i,wolf in enumerate(wolves):  
                    score = fitness(wolf)  
                    if score > alpha_score:  
                        alpha_score = score
                        alpha=wolf.copy()
                    elif score > beta_score:  
                        beta_score = score
                        beta=wolf.copy() 
                    elif score > delta_score:  
                            delta_score, delta = score, wolf.copy()
                            delta=wolf.copy()
                        
                #更新每只灰狼的位置
                a = 2 - l * ((2) / max_iter);  # a从2线性减少到0
                for i in range(wolf_size):
                   for j in range(solution_size):  
                        r1, r2 = random.random(), random.random()  
                        A1, C1 = 2 * a * r1 - a, 2 * r2  
                        D_alpha = abs(C1 * alpha[j] - wolves[i, j])  
                        X1 = alpha[j] - A1 * D_alpha  
      
                        r1, r2 = random.random(), random.random()  
                        A2, C2 = 2 * a * r1 - a, 2 * r2  
                        D_beta = abs(C2 * beta[j] - wolves[i, j])  
                        X2 = beta[j] - A2 * D_beta  
      
                        r1, r2 = random.random(), random.random()  
                        A3, C3 = 2 * a * r1 - a, 2 * r2  
                        D_delta = abs(C3 * delta[j] - wolves[i, j])  
                        X3 = delta[j] - A3 * D_delta  
                        wolves[i, j] = round((X1 + X2 + X3) / 3)  # 四舍五入确保是0或1
            return alpha        
        #初始化参数
        solution_size = len(graph)
        max_iter=20
        wolf_size=10
        best_clique = grey_wolf_optimizer(graph, solution_size, wolf_size, max_iter)  
        return best_clique
    # 执行最大团问题求解  
    max_clique_result = max_clique_GWO(graph)
    #输出结果
    result=np.where(max_clique_result==1)[0]
    for i in range(len(result)):
        result[i]=result[i]+1
    print("最大团为:", result)  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值