import cv2
import matplotlib.pylab as plt
import numpy as np
img1 = cv2.imread('D:\\gudugudu\\Pictures\\weixin\\xiaotidaya.jpg', cv2.IMREAD_ANYCOLOR)
img2 = cv2.imread('D:\\gudugudu\\Pictures\\weixin\\guoqing.jpg', cv2.IMREAD_ANYCOLOR)
img3 = cv2.imread('D:\\gudugudu\\Pictures\\weixin\\zhaoyang.jpg', cv2.IMREAD_ANYCOLOR)
img_x = cv2.resize(img1, (500, 500))
img_y = cv2.resize(img2, (500, 500))
img_z = cv2.resize(img3, (500, 500))
vc = cv2.VideoCapture("D:\\gudugudu\\Pictures\\weixin\\WeChat_20240706150425.mp4")
gray = cv2.cvtColor(img_y, cv2.COLOR_BGR2GRAY)
def drawImg(img):
ret, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
draw_img = img.copy()
res = cv2.drawContours(draw_img, contours, -1, (0, 0, 255), 3)
cv2.imshow('gudu', res)
cv2.waitKey(0)
cv2.destroyAllWindows()
#轮廓特征
def contour(img):
ret, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cv2.contourArea(binary)#面积
cv2.arcLength(binary, True)#周长
#轮廓的近似
def Contours(img):
ret, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
draw_img = img.copy()
cnt = contours[0]
epsilon = 1 * cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, epsilon, True)
res = cv2.drawContours(draw_img, [approx], -1, (0, 0, 255), 2)
cv2.imshow('gudu', res)
cv2.waitKey(0)
cv2.destroyAllWindows()
#边界矩形
def juxing(img):
ret, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[3]
x, y, w, h = cv2.boundingRect(cnt)
img = cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
area = cv2.contourArea(cnt)#计算边缘矩形的面积
area_rect = w * h
extent = float(area) / area_rect
print(extent)
cv2.imshow('gudu', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
#模板匹配
'''
从第一个开始从左到右,从上到下对模板进行匹配;
调用模板匹配的方法,用归一化的结果
'''
def Methods(img, img1):
ret, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[3]
x, y, w, h = cv2.boundingRect(cnt)
template = img1
methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR', 'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
for meth in methods:
img2 = img.copy()
method = eval(meth)
print(method)
res = cv2.matchTemplate(img, template, method)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
top_left = min_loc
else:
top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
cv2.rectangle(img2, top_left, bottom_right, 255, 2)
plt.subplot(121), plt.imshow(res, cmap='gray')
plt.xticks([]), plt.yticks([]) #隐藏坐标轴
plt.subplot(122), plt.imshow(img2, cmap='gray')
plt.xticks([]), plt.yticks([])
plt.show()
#匹配多个对象
def many(img, img1):
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
template = img1
ret, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[3]
x, y, w, h = cv2.boundingRect(cnt)
res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
threshold = 0.8
loc = np.where(res >= threshold)
for pt in zip(*loc[::-1]):
bottom_right = (pt[0] + w, pt[1] + h)
cv2.rectangle(img, pt, bottom_right, (0, 0, 255), 2)
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
opencv_day7
最新推荐文章于 2025-12-04 22:17:34 发布
951





