本节课课堂总结:
数据加载与保存:
通用方式:
SparkSQL 提供了通用的保存数据和数据加载的方式。这里的通用指的是使用相同的API,根据不同的参数读取和保存不同格式的数据,SparkSQL 默认读取和保存的文件格式为parquet
加载数据:
spark.read.load 是加载数据的通用方法。如果读取不同格式的数据,可以对不同的数据格式进行设定。
spark.read.format("…")[.option("…")].load("…")
➢ format("…"):指定加载的数据类型,包括"csv"、"jdbc"、"json"、"orc"、"parquet"和
"textFile"。
➢ load("…"):在"csv"、"jdbc"、"json"、"orc"、"parquet"和"textFile"格式下需要传入加载
数据的路径。
➢ option("…"):在"jdbc"格式下需要传入 JDBC 相应参数,url、user、password 和 dbtable
我们前面都是使用 read API 先把文件加载到 DataFrame 然后再查询,其实,我们也可以直接在文件上进行查询: 文件格式.`文件路径`
spark.sql("select * from json.’ Spark-SQL/input/user.json’").show
保存数据:
df.write.save 是保存数据的通用方法。如果保存不同格式的数据,可以对不同的数据格式进行设定。
df.write.format("…")[.option("…")].save("…")
➢ format("…"):指定保存的数据类型,包括"csv"、"jdbc"、"json"、"orc"、"parquet"和
"textFile"。
➢ save ("…"):在"csv"、"orc"、"parquet"和"textFile"格式下需要传入保存数据的路径。
➢ option("…"):在"jdbc"格式下需要传入 JDBC 相应参数,url、user、password 和 dbtable
保存操作可以使用 SaveMode, 用来指明如何处理数据,使用 mode()方法来设置。
Parquet
Spark SQL 的默认数据源为 Parquet 格式。Parquet 是一种能够有效存储嵌套数据的列式
存储格式。数据源为 Parquet 文件时,Spark SQL 可以方便的执行所有的操作,不需要使用 format。修改配置项 spark.sql.sources.default,可修改默认数据源格式。
加载数据:
val df = spark.read.load("examples/src/main/resources/users.parquet")
保存数据:
var df = spark.read.json("/opt/module/data/input/people.json")
df.write.mode("append").save("/opt/module/data/output")
JSON
Spark SQL 能够自动推测 JSON 数据集的结构,并将它加载为一个 Dataset[Row]. 可以
通过 SparkSession.read.json()去加载 JSON 文件。
注意:Spark 读取的 JSON 文件不是传统的 JSON 文件,每一行都应该是一个 JSON 串
加载json文件
val path = "/opt/module/spark-local/people.json"
val peopleDF = spark.read.json(path)
创建临时表
peopleDF.createOrReplaceTempView("people")
数据查询
val resDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19")
MySQL
Spark SQL 可以通过 JDBC 从关系型数据库中读取数据的方式创建 DataFrame,通过对
DataFrame 一系列的计算后,还可以将数据再写回关系型数据库中。
IDEA通过JDBC对MySQL进行操作:
1)导入依赖
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.27</version>
</dependency>
MySQL8 <version>8.0.11</version>
2)读取数据
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SQL")
val spark:SparkSession = SparkSession.builder().config(sparkConf).getOrCreate()
import spark.implicits._
//通用的load方式读取
spark.read.format("jdbc")
.option("url","jdbc:mysql://localhost:3306/system")
.option("driver","com.mysql.jdbc.Driver")//com.mysql.cj.jdbc.Driver
.option("user","root")
.option("password","123456")
.option("dbtable","user")
.load().show()
spark.stop()
//通用的load方法的另一种形式
spark.read.format("jdbc")
.options(
Map("url"->"jdbc:mysql://localhost:3306/system?user=root&password=123456","dbtable"->"user","driver"->"com.mysql.jdbc.Driver"))
.load().show()
//通过JDBC
val pros :Properties = new Properties()
pros.setProperty("user","root")
pros.setProperty("password","123456")
val df :DataFrame = spark.read.jdbc("jdbc:mysql://localhost:3306/system","user",pros)
df.show()
3)写入数据
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SQL")
val spark:SparkSession = SparkSession.builder().config(sparkConf).getOrCreate()
import spark.implicits._
val rdd: RDD[Stu] = spark.sparkContext.makeRDD(List(Stu("lisi", 20),
Stu("zs", 30)))
val ds:Dataset[Stu] = rdd.toDS()
ds.write.format("jdbc")
.option("url","jdbc:mysql://localhost:3306/system")
.option("driver","com.mysql.jdbc.Driver")
.option("user","root")
.option("password","123456")
.option("dbtable","user2")
.mode(SaveMode.Append)
.save()
spark.stop()
Spark-SQL连接Hive
Apache Hive 是 Hadoop 上的 SQL 引擎,Spark SQL 编译时可以包含 Hive 支持,也可以不包含。包含 Hive 支持的 Spark SQL 可以支持 Hive 表访问、UDF (用户自定义函数)、Hive 查询语言(HQL)等。需要强调的一点是,如果要在 Spark SQL 中包含Hive 的库,并不需要事先安装 Hive。一般来说,最好还是在编译 Spark SQL 时引入 Hive支持,这样就可以使用这些特性了。
使用方式分为内嵌Hive、外部Hive、Spark-SQL CLI、Spark beeline 以及代码操作。
运行Spark-SQL CLI
Spark SQL CLI 可以很方便的在本地运行 Hive 元数据服务以及从命令行执行查询任务。在 Spark 目录下执行如下命令启动 Spark SQL CLI,直接执行 SQL 语句,类似于 Hive 窗口。
操作步骤:
1.将mysql的驱动放入jars/当中;
2.将hive-site.xml文件放入conf/当中;
3.运行bin/目录下的spark-sql.cmd 或者打开cmd,在
D:\spark\spark-3.0.0-bin-hadoop3.2\bin当中直接运行spark-sql
代码操作Hive
1.导入依赖。
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.12</artifactId>
<version>3.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>2.3.3</version>
</dependency>
可能出现下载jar包的问题:
D:\maven\repository\org\pentaho\pentaho-aggdesigner-algorithm\5.1.5-jhyde
2.将hive-site.xml 文件拷贝到项目的 resources 目录中。
3.代码实现。
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("hive")
val spark:SparkSession = SparkSession.builder()
.enableHiveSupport()
.config(sparkConf)
.getOrCreate()
spark.sql("show databases").show()
spark.sql("create database spark_sql")
spark.sql("show databases").show()