Python下3种文字识别工具的源码和效果比较

1.pytesseract

import pytesseract
from PIL import Image

im = Image.open(r'C:/Users/YBK/Pictures/35005.jpg')
string = pytesseract.image_to_string(im,lang='chi_sim')
print(string)

2.paddleocr

from paddleocr import PaddleOCR, draw_ocr

ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
img_path = r'C:/Users/YBK/Pictures/35005.jpg'
result = ocr.ocr(img_path, cls=True)
# for line in result:
#     print(line)
 
# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [detection[0] for line in result for detection in line] # Nested loop added
txts = [detection[1][0] for line in result for detection in line] # Nested loop added
scores = [detection[1][1] for line in result for detection in line] # Nested loop added
# im_show = draw_ocr(image, boxes, txts, scores)
# im_show = Image.fromarray(im_show)
# im_show.save('test.jpg')
for tt in txts:
    print(tt)

3.某个易语言程序的接口

from urllib import request, parse
import requests
import base64
import json
from urllib.request import urlretrieve
import os
import cv2
import base64
import numpy as np
import time
import pandas as pd
 
 
def image_to_base64(image_mat):
    image = cv2.imencode('.jpg', image_mat)[1]
    image_code = str(base64.b64encode(image), 'utf-8')
    return image_code
 
if __name__ == '__main__':
    url = "http://127.0.0.1:19811/ocr_data_2"
    testImgp = r'C:/Users/YBK/Pictures/35005.jpg'
    img = cv2.imread(testImgp)
    headers = {'content-type': "application/json"}
 
    data
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值