mysql事务深度剖析

目录

引言

什么是事务?

为什么会出现事务

事务提交方式

自动提交和手动提交的区别

事务常见操作方式

结论:

事务隔离级别

隔离级别

查看与设置隔离性

读未提交【Read Uncommitted】

读提交【Read Committed】

可重复读【Repeatable Read】

串行化【serializable】

如何理解隔离性(深度剖析)

什么是MVCC

3个记录隐藏列字段

undo 日志

Read View

当然,不仅仅是select查询才会生成快照,还有其他生成快照的机制。

下面是 ReadView 结构,我们简化一下

RR 与 RC的本质区别


引言

本文将深入介绍mysql事务机制,以及对读未提交( Read uncommitted )、读提交( read committed )、可重复读( repeatable read )和串行化 ( Serializable 进行详细讲解。

下面通过一个示例引入:

CURD 不加控制,会有什么问题?
CURD 满足什么属性,能解决上述问题?
1. 买票的过程得是原子的吧
2. 买票互相应该不能影响吧
3. 买完票应该要永久有效吧
4. 买前,和买后都要是确定的状态吧

什么是事务?

事务就是一组 DML 语句组成,这些语句在逻辑上存在相关性,这一组 DML语句要么全部成功,要么全部失败,是一个整体。 MySQL提供一种机制,保证我们达到这样的效果。事务还规定不同的客户端看到的数据是不相同的。
事务就是要做的或所做的事情,主要用于处理操作量大,复杂度高的数据。假设一种场景:你毕业了,学校的教务系统后台 MySQL 中,不在需要你的数据,要删除你的所有信息 ( 一般不会 :) ), 那么要删除你的基本信息 ( 姓名,电话,籍贯等 )的同时,也删除和你有关的其他信息,比如:你的各科成绩,你在校表现,甚至你在论坛发过的文章等。这样,就需要多条 MySQL 语句构成,那么所有这些操作合起来,就构成了一个事务。
正如我们上面所说,一个 MySQL 数据库,可不止你一个事务在运行,同一时刻,甚至有大量的请求被包装成事务,在向 MySQL 服务器发起事务处理请求。而每条事务至少一条 SQL ,最多很多 SQL ,这样如果大家都访问同样的表数据,在不加保护的情况,就绝对会出现问题。甚至,因为事务由多条 SQL 构成,那么,也会存在执行到一半出错或者不想再执行的情况,那么已经执行的怎么办呢?
所有,一个完整的事务,绝对不是简单的 sql 集合,还需要满足如下四个属性:
原子性: 一个事务( transaction )中的所有操作,要么全部完成,要么全部不完成,不会结束在中
间某个环节。事务在执行过程中发生错误,会被回滚( Rollback )到事务开始前的状态,就像这个
事务从来没有执行过一样。
一致性: 在事务开始之前和事务结束以后,数据库的完整性没有被破坏。这表示写入的资料必须完
全符合所有的预设规则,这包含资料的精确度、串联性以及后续数据库可以自发性地完成预定的工
作。
隔离性: 数据库允许多个并发事务同时对其数据进行读写和修改的能力,隔离性可以防止多个事务
并发执行时由于交叉执行而导致数据的不一致。事务隔离分为不同级别,包括读未提交( Read
uncommitted )、读提交( read committed )、可重复读( repeatable read )和串行化
Serializable
持久性: 事务处理结束后,对数据的修改就是永久的,即便系统故障也不会丢失。
上面四个属性,可以简称为 ACID
原子性( A tomicity ,或称不可分割性)
一致性( C onsistency
隔离性( I solation ,又称独立性)
持久性( D urability )。

为什么会出现事务

事务被 MySQL 编写者设计出来 , 本质是为了当应用程序访问数据库的时候 , 事务能够简化我们的编程模型, 不需要我们去考虑各种各样的潜在错误和并发问题 . 可以想一下当我们使用事务时 , 要么提交 , 要么回滚 ,我们不会去考虑网络异常了 , 服务器宕机了 , 同时更改一个数据怎么办对吧 ? 因此事务本质上是为了应用层服 务的 . 而不是伴随着数据库系统天生就有的 .
备注:我们后面把 MySQL 中的一行信息,称为一行记录
事务的版本支持
MySQL 只有使用了 Innodb 数据库引擎的数据库或表才支持事务 MyISAM 不支持。
查看数据库引擎
mysql> show engines; -- 表格显示
mysql> show engines \G -- 行显示
*************************** 1. row ***************************
Engine: InnoDB -- 引擎名称
Support: DEFAULT -- 默认引擎
Comment: Supports transactions, row-level locking, and foreign keys -- 描述
Transactions: YES -- 支持事务
XA: YES
Savepoints: YES -- 支持事务保存点
*************************** 2. row ***************************
Engine: MRG_MYISAM
Support: YES
Comment: Collection of identical MyISAM tables
Transactions: NO
XA: NO
Savepoints: NO
*************************** 3. row ***************************
Engine: MEMORY --内存引擎
Support: YES
Comment: Hash based, stored in memory, useful for temporary tables
Transactions: NO
XA: NO
Savepoints: NO
*************************** 4. row ***************************
Engine: BLACKHOLE
Support: YES
Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
XA: NO
Savepoints: NO
*************************** 5. row ***************************
Engine: MyISAM
Support: YES
Comment: MyISAM storage engine
Transactions: NO -- MyISAM不支持事务
XA: NO
Savepoints: NO
*************************** 6. row ***************************
Engine: CSV
Support: YES
Comment: CSV storage engine
Transactions: NO
XA: NO
Savepoints: NO
*************************** 7. row ***************************
Engine: ARCHIVE
Support: YES
Comment: Archive storage engine
Transactions: NO
XA: NO
Savepoints: NO
*************************** 8. row ***************************
Engine: PERFORMANCE_SCHEMA
Support: YES
Comment: Performance Schema
Transactions: NO
XA: NO
Savepoints: NO
*************************** 9. row ***************************
Engine: FEDERATED
Support: NO
Comment: Federated MySQL storage engine
Transactions: NULL
XA: NULL
Savepoints: NULL
9 rows in set (0.00 sec

事务提交方式

事务的提交方式常见的有两种:
自动提交
手动提交
查看事务提交方式
mysql> show variables like 'autocommit';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.41 sec)
SET 来改变 MySQL 的自动提交模式
mysql> SET AUTOCOMMIT=0; #SET AUTOCOMMIT=0 禁止自动提交
Query OK, 0 rows affected (0.00 sec)
mysql> show variables like 'autocommit';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit     | OFF |
+---------------+-------+
1 row in set (0.00 sec)

mysql> SET AUTOCOMMIT=1; #SET AUTOCOMMIT=1 开启自动提交
Query OK, 0 rows affected (0.00 sec)
mysql> show variables like 'autocommit';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.01 sec)

自动提交和手动提交的区别

自动提交和手动提交是数据库事务处理中的两种不同的提交方式,它们在何时将事务中的更改永久保存到数据库中有本质的区别:

自动提交(Auto-commit)

定义:自动提交模式是数据库系统默认的一种行为,在这种模式下,每执行一个SQL语句,数据库系统就会自动将其视为一个事务,并在语句成功执行后立即提交。

行为:在自动提交模式下,不需要程序员显示地开始或结束一个事务。每个SQL语句都是独立的,要么完全成功,要么在遇到错误时完全回滚。

适用场景:通常适用于简单的操作,或者对事务性要求不高的场景。

优点:简化了编程模型,因为程序员不需要关心事务的开始和结束。

缺点:在执行一系列相关操作时,不能保证操作的原子性,因为每个操作都是单独提交的。

手动提交(Manual-commit)

定义:在手动提交模式下,需要显式地开始一个事务,执行多个SQL语句,然后选择性地提交或回滚整个事务。

行为:使用BEGIN TRANSACTION(或相似语句)来开始一个事务,执行所需的操作,然后根据操作的成功与否,决定使用COMMIT来提交事务,或者使用ROLLBACK来回滚事务。

适用场景:适用于需要执行一系列相关操作,并且这些操作需要作为一个整体成功或失败的场景。

优点:可以保证一系列操作的原子性,一致性,隔离性和持久性(ACID属性)。

缺点:需要更多的编程工作来管理事务的开始和结束,不当的事务管理可能导致数据不一致的问题。

总结来说,自动提交和手动提交的主要区别在于事务的控制方式和对一系列操作原子性的保证。自动提交简化了单个操作的提交过程,而手动提交提供了更精细的事务控制,适用于需要保证多个操作整体性的复杂场景。

事务常见操作方式

简单银行用户表

提前准备

## Centos 7 云服务器,默认开启3306 mysqld服务
[xxx@VM-0-3-centos ~]$ sudo netstat -nltp
[sudo] password for whb:
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
PID/Program name
tcp6 0 0 :::3306 :::* LISTEN
30415/mysqld
## 使用win cmd远程访问Centos 7云服务器,mysqld服务(需要win上也安装了MySQL,这里看到结
果即可)
## 注意,使用本地mysql客户端,可能看不到链接效果,本地可能使用域间套接字,查不到链接
C:\Users\whb>mysql -uroot -p -h42.192.83.143
Enter password: ***********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3484
Server version: 5.7.33 MySQL Community Server (GPL)
Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.
Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.
## 使用netstat查看链接情况,可知:mysql本质是一个客户端进程
[xxx@VM-0-3-centos ~]$ sudo netstat -ntp
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
PID/Program name
tcp6 0 0 172.17.0.3:3306 113.132.141.236:19354
ESTABLISHED 30415/mysqld
## 为了便于演示,我们将mysql的默认隔离级别设置成读未提交。
## 具体操作我们后面专门会讲,现在已使用为主。
mysql> set global transaction isolation level READ UNCOMMITTED;
Query OK, 0 rows affected (0.00 sec)
mysql> quit
Bye
##需要重启终端,进行查看
mysql> select @@tx_isolation;
+------------------+
| @@tx_isolation |
+------------------+
| READ-UNCOMMITTED |
+------------------+
1 row in set, 1 warning (0.00 sec)
创建测试表
create table if not exists account(
id int primary key,
name varchar(50) not null default '',
blance decimal(10,2) not null default 0.0
)ENGINE=InnoDB DEFAULT CHARSET=UTF8;
正常演示 - 证明事务的开始与回滚
mysql> show variables like 'autocommit'; -- 查看事务是否自动提交。我们故意设置成自
动提交,看看该选项是否影响begin
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.00 sec)
mysql> start transaction; -- 开始一个事务begin也可以,推荐begin
Query OK, 0 rows affected (0.00 sec)
mysql> savepoint save1; -- 创建一个保存点save1
Query OK, 0 rows affected (0.00 sec)
mysql> insert into account values (1, '张三', 100); -- 插入一条记录
Query OK, 1 row affected (0.05 sec)
mysql> savepoint save2; -- 创建一个保存点save2
Query OK, 0 rows affected (0.01 sec)
mysql> insert into account values (2, '李四', 10000); -- 在插入一条记录
Query OK, 1 row affected (0.00 sec)
mysql> select * from account; -- 两条记录都在了
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 100.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> rollback to save2; -- 回滚到保存点save2
Query OK, 0 rows affected (0.03 sec)
mysql> select * from account; -- 一条记录没有了
+----+--------+--------+
| id | name | blance |
+----+--------+--------+
| 1 | 张三 | 100.00 |
+----+--------+--------+
1 row in set (0.00 sec)
mysql> rollback; -- 直接rollback,回滚在最开始
Query OK, 0 rows affected (0.00 sec)
mysql> select * from account; -- 所有刚刚的记录没有了
Empty set (0.00 sec)
非正常演示 1 - 证明未 commit ,客户端崩溃, MySQL 自动会回滚(隔离级别设置为读未提交)
-- 终端A
mysql> select * from account; -- 当前表内无数据
Empty set (0.00 sec)
mysql> show variables like 'autocommit'; -- 依旧自动提交
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.00 sec)
mysql> begin; --开启事务
Query OK, 0 rows affected (0.00 sec)
mysql> insert into account values (1, '张三', 100); -- 插入记录
Query OK, 1 row affected (0.00 sec)
mysql> select * from account; --数据已经存在,但没有commit,此时同时查看
终端B
+----+--------+--------+
| id | name | blance |
+----+--------+--------+
| 1 | 张三 | 100.00 |
+----+--------+--------+
1 row in set (0.00 sec)
mysql> Aborted -- ctrl + \ 异常终止MySQL
--终端B
mysql> select * from account; --终端A崩溃前
+----+--------+--------+
| id | name | blance |
+----+--------+--------+
| 1 | 张三 | 100.00 |
+----+--------+--------+
1 row in set (0.00 sec)
mysql> select * from account; --数据自动回滚
Empty set (0.00 sec)
非正常演示 2 - 证明 commit 了,客户端崩溃, MySQL 数据不会在受影响,已经持久化
--终端 A
mysql> show variables like 'autocommit'; -- 依旧自动提交
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.00 sec)
mysql> select * from account; -- 当前表内无数据
Empty set (0.00 sec)
mysql> begin; -- 开启事务
Query OK, 0 rows affected (0.00 sec)
mysql> insert into account values (1, '张三', 100); -- 插入记录
Query OK, 1 row affected (0.00 sec)
mysql> commit; --提交事务
Query OK, 0 rows affected (0.04 sec)
mysql> Aborted -- ctrl + \ 异常终止MySQL
--终端 B
mysql> select * from account; --数据存在了,所以commit的作用是将数据持久
化到MySQL中
+----+--------+--------+
| id | name | blance |
+----+--------+--------+
| 1 | 张三 | 100.00 |
+----+--------+--------+
1 row in set (0.00 sec)
非正常演示 3 - 对比试验。证明 begin 操作会自动更改提交方式,不会受 MySQL 是否自动提交影响
-- 终端 A
mysql> select *from account; --查看历史数据
+----+--------+--------+
| id | name | blance |
+----+--------+--------+
| 1 | 张三 | 100.00 |
+----+--------+--------+
1 row in set (0.00 sec)
mysql> show variables like 'autocommit'; --查看事务提交方式
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.00 sec)
mysql> set autocommit=0; --关闭自动提交
Query OK, 0 rows affected (0.00 sec)
mysql> show variables like 'autocommit'; --查看关闭之后结果
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | OFF |
+---------------+-------+
1 row in set (0.00 sec)
mysql> begin; --开启事务
Query OK, 0 rows affected (0.00 sec)
mysql> insert into account values (2, '李四', 10000); --插入记录
Query OK, 1 row affected (0.00 sec)
mysql> select *from account; --查看插入记录,同时查看终端B
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 100.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> Aborted --再次异常终止
-- 终端B
mysql> select * from account; --终端A崩溃前
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 100.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> select * from account; --终端A崩溃后,自动回滚
+----+--------+--------+
| id | name | blance |
+----+--------+--------+
| 1 | 张三 | 100.00 |
+----+--------+--------+
1 row in set (0.00 sec)
非正常演示 4 - 证明单条 SQL 与事务的关系
--实验一
-- 终端A
mysql> select * from account;
+----+--------+--------+
| id | name | blance |
+----+--------+--------+
| 1 | 张三 | 100.00 |
+----+--------+--------+
1 row in set (0.00 sec)
mysql> show variables like 'autocommit';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.00 sec)
mysql> set autocommit=0; --关闭自动提交
Query OK, 0 rows affected (0.00 sec)
mysql> insert into account values (2, '李四', 10000); --插入记录
Query OK, 1 row affected (0.00 sec)
mysql> select *from account; --查看结果,已经插入。此时可以在查
看终端B
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 100.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> ^DBye --ctrl + \ or ctrl + d,终止终
端
--终端B
mysql> select * from account; --终端A崩溃前
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 100.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> select * from account; --终端A崩溃后
+----+--------+--------+
| id | name | blance |
+----+--------+--------+
| 1 | 张三 | 100.00 |
+----+--------+--------+
1 row in set (0.00 sec)
-- 实验二
--终端A
mysql> show variables like 'autocommit'; --开启默认提交
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.00 sec)
mysql> select * from account;
+----+--------+--------+
| id | name | blance |
+----+--------+--------+
| 1 | 张三 | 100.00 |
+----+--------+--------+
1 row in set (0.00 sec)
mysql> insert into account values (2, '李四', 10000);
Query OK, 1 row affected (0.01 sec)
mysql> select *from account; --数据已经插入
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 100.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> Aborted --异常终止
--终端B
mysql> select * from account; --终端A崩溃前
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 100.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> select * from account; --终端A崩溃后,并不影响,已经持久化。autocommit
起作用
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 100.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)

结论:

1.只要输入begin或者start transaction,事务便必须要通过commit提交,才会持久化,与是
否设置set autocommit无关。
2.事务可以手动回滚,同时,当操作异常,MySQL会自动回滚
3.对于 InnoDB 每一条 SQL 语言都默认封装成事务,自动提交。(select有特殊情况,因为
MySQL 有 MVCC )
从上面的例子,我们能看到事务本身的原子性(回滚),持久性(commit)
事务操作注意事项
如果没有设置保存点,也可以回滚,只能回滚到事务的开始。直接使用 rollback(前提是事务
还没有提交)
如果一个事务被提交了(commit),则不可以回退(rollback)
可以选择回退到哪个保存点
InnoDB 支持事务, MyISAM 不支持事务
开始事务可以使 start transaction 或者 begin
注:
设置回滚:savepoint 名称
回滚:rollback to savepoint 名称

事务隔离级别

如何理解隔离性 1
MySQL 服务可能会同时被多个客户端进程 ( 线程 )访问,访问的方式以事务方式进行一个事务可能由多条SQL构成,也就意味着,任何一个事务,都有执行前,执行中,执行后的阶段。而所谓的原子性,其实就是让用户层,要么看到执行前,要么看到执行后。执行中出现问题,可以随时回滚。所以单个事务,对用户表现出来的特性,就是原子性。
但,毕竟所有事务都要有个执行过程,那么在多个事务各自执行多个 SQL 的时候,就还是有可能会
出现互相影响的情况。比如:多个事务同时访问同一张表,甚至同一行数据。
就如同你妈妈给你说:你要么别学,要学就学到最好。至于你怎么学,中间有什么困难,你妈妈不
关心。那么你的学习,对你妈妈来讲,就是原子的。那么你学习过程中,很容易受别人干扰,此
时,就需要将你的学习隔离开,保证你的学习环境是健康的。
数据库中,为了保证事务执行过程中尽量不受干扰,就有了一个重要特征:隔离性数据库中,允许事务受不同程度的干扰,就有了一种重要特征:隔离级别。

隔离级别

读未提交【 Read Uncommitted : 在该隔离级别,所有的事务都可以看到其他事务没有提交的
执行结果。(实际生产中不可能使用这种隔离级别的),但是相当于没有任何隔离性,也会有很多
并发问题,如脏读,幻读,不可重复读等,我们上面为了做实验方便,用的就是这个隔离性。
读提交【 Read Committed :该隔离级别是大多数数据库的默认的隔离级别(不是 MySQL
认的)。它满足了隔离的简单定义 :一个事务只能看到其他的已经提交的事务所做的改变。这种隔离级别会引起不可重复读,即一个事务执行时,如果多次 select , 可能得到不同的结果。
可重复读【 Repeatable Read : 这是 MySQL 默认的隔离级别,它确保同一个事务,在执行
中,多次读取操作数据时,会看到同样的数据行。但是会有幻读问题。
串行化【 Serializable : 这是事务的最高隔离级别,它通过强制事务排序,使之不可能相互冲突,
从而解决了幻读的问题。它在每个读的数据行上面加上共享锁,。但是可能会导致超时和锁竞争
(这种隔离级别太极端,实际生产基本不使用)
隔离级别如何实现:隔离,基本都是通过锁实现的,不同的隔离级别,锁的使用是不同的。常见有,表锁,行锁,读锁,写锁,间隙锁 (GAP),Next-Key (GAP+ 行锁 ) 等。

查看与设置隔离性

mysql> SELECT @@global.tx_isolation; --查看全局隔级别
+-----------------------+
| @@global.tx_isolation |
+-----------------------+
| REPEATABLE-READ |
+-----------------------+
1 row in set, 1 warning (0.00 sec)
mysql> SELECT @@session.tx_isolation; --查看会话(当前)全局隔级别
+------------------------+
| @@session.tx_isolation |
+------------------------+
| REPEATABLE-READ |
+------------------------+
1 row in set, 1 warning (0.00 sec)
mysql> SELECT @@tx_isolation; --默认同上
+-----------------+
| @@tx_isolation |
+-----------------+
| REPEATABLE-READ |
+-----------------+
1 row in set, 1 warning (0.00 sec)
--设置
-- 设置当前会话 or 全局隔离级别语法
SET [SESSION | GLOBAL] TRANSACTION ISOLATION LEVEL {READ UNCOMMITTED | READ
COMMITTED | REPEATABLE READ | SERIALIZABLE}
--设置当前会话隔离性,另起一个会话,看不多,只影响当前会话
mysql> set session transaction isolation level serializable; -- 串行化
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @@global.tx_isolation; --全局隔离性还是RR
+-----------------------+
| @@global.tx_isolation |
+-----------------------+
| REPEATABLE-READ |
+-----------------------+
1 row in set, 1 warning (0.00 sec)
mysql> SELECT @@session.tx_isolation; --会话隔离性成为串行化
+------------------------+
| @@session.tx_isolation |
+------------------------+
| SERIALIZABLE |
+------------------------+
1 row in set, 1 warning (0.00 sec)
mysql> SELECT @@tx_isolation; --同上
+----------------+
| @@tx_isolation |
+----------------+
| SERIALIZABLE |
+----------------+
1 row in set, 1 warning (0.00 sec)
--设置全局隔离性,另起一个会话,会被影响
mysql> set global transaction isolation level READ UNCOMMITTED;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @@global.tx_isolation;
+-----------------------+
| @@global.tx_isolation |
+-----------------------+
| READ-UNCOMMITTED |
+-----------------------+
1 row in set, 1 warning (0.00 sec)
mysql> SELECT @@session.tx_isolation;
+------------------------+
| @@session.tx_isolation |
+------------------------+
| READ-UNCOMMITTED |
+------------------------+
1 row in set, 1 warning (0.00 sec)
mysql> SELECT @@tx_isolation;
+------------------+
| @@tx_isolation |
+------------------+
| READ-UNCOMMITTED |
+------------------+
1 row in set, 1 warning (0.00 sec)
-- 注意,如果没有现象,关闭mysql客户端,重新连接。

设置隔离级别时,分为全局和会话。

读未提交【Read Uncommitted

--几乎没有加锁,虽然效率高,但是问题太多,严重不建议采用
--终端A
-- 设置隔离级别为 读未提交
mysql> set global transaction isolation level read uncommitted;
Query OK, 0 rows affected (0.00 sec)
--重启客户端
mysql> select @@tx_isolation;
+------------------+
| @@tx_isolation |
+------------------+
| READ-UNCOMMITTED |
+------------------+
1 row in set, 1 warning (0.00 sec)
mysql> select * from account;
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 100.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> begin; --开启事务
Query OK, 0 rows affected (0.00 sec)
mysql> update account set blance=123.0 where id=1; --更新指定行
Query OK, 1 row affected (0.05 sec)
Rows matched: 1 Changed: 1 Warnings: 0
--没有commit哦!!!
--终端B
mysql> begin;
mysql> select * from account;
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 123.00 | --读到终端A更新但是未commit的数据[insert,
delete同样]
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
--一个事务在执行中,读到另一个执行中事务的更新(或其他操作)但是未commit的数据,这种现象叫做脏读
(dirty read)

读提交【Read Committed

-- 终端A
mysql> set global transaction isolation level read committed;
Query OK, 0 rows affected (0.00 sec)
--重启客户端
mysql> select * from account; --查看当前数据
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 123.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> begin; --手动开启事务,同步的开始终端B事务
Query OK, 0 rows affected (0.00 sec)
mysql> update account set blance=321.0 where id=1; --更新张三数据
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0
--切换终端到终端B,查看数据。
mysql> commit; --commit提交!
Query OK, 0 rows affected (0.01 sec)
--切换终端到终端B,再次查看数据。
--终端B
mysql> begin; --手动开启事务,和终端A一前一后
Query OK, 0 rows affected (0.00 sec)
mysql> select * from account; --终端A commit之前,查看不到
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 123.00 | --老的值
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
--终端A commit之后,看到了!
--but,此时还在当前事务中,并未commit,那么就造成了,同一个事务内,同样的读取,在不同的时间段
(依旧还在事务操作中!),读取到了不同的值,这种现象叫做不可重复读(non reapeatable read)!!
(这个是问题吗??)
mysql> select *from account;
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 321.00 | --新的值
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)

可重复读【Repeatable Read

--终端A
mysql> set global transaction isolation level repeatable read; --设置全局隔离级别
RR
Query OK, 0 rows affected (0.01 sec)
--关闭终端重启
mysql> select @@tx_isolation;
+-----------------+
| @@tx_isolation |
+-----------------+
| REPEATABLE-READ | --隔离级别RR
+-----------------+
1 row in set, 1 warning (0.00 sec)
mysql> select *from account; --查看当前数据
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 321.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> begin; --开启事务,同步的,终端B也开始事务
Query OK, 0 rows affected (0.00 sec)
mysql> update account set blance=4321.0 where id=1; --更新数据
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0
--切换到终端B,查看另一个事务是否能看到
mysql> commit; --提交事务
--切换终端到终端B,查看数据。
--终端B
mysql> begin;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from account; --终端A中事务 commit之前,查看当前表中数据,数据未更新
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 321.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> select * from account; --终端A中事务 commit 之后,查看当前表中数据,数据未更新
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 321.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
--可以看到,在终端B中,事务无论什么时候进行查找,看到的结果都是一致的,这叫做可重复读!
mysql> commit; --结束事务
Query OK, 0 rows affected (0.00 sec)
mysql> select * from account; --再次查看,看到最新的更新数据
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 4321.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
----------------------------------------------------------------
--如果将上面的终端A中的update操作,改成insert操作,会有什么问题??
--终端A
mysql> select *from account;
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 321.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> begin; --开启事务,终端B同步开启
Query OK, 0 rows affected (0.00 sec)
mysql> insert into account (id,name,blance) values(3, '王五', 5432.0);
Query OK, 1 row affected (0.00 sec)
--切换到终端B,查看另一个事务是否能看到
mysql> commit; --提交事务
Query OK, 0 rows affected (0.00 sec)
--切换终端到终端B,查看数据。
mysql> select * from account;
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 4321.00 |
| 2 | 李四 | 10000.00 |
| 3 | 王五 | 5432.00 |
+----+--------+----------+
3 rows in set (0.00 sec)
--终端B
mysql> begin; --开启事务
Query OK, 0 rows affected (0.00 sec)
mysql> select * from account; --终端A commit前 查看
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 4321.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> select * from account; --终端A commit后 查看
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 4321.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> select * from account; --多次查看,发现终端A在对应事务中insert的数据,在终端B的事
务周期中,也没有什么影响,也符合可重复的特点。但是,一般的数据库在可重复读情况的时候,无法屏蔽其
他事务insert的数据(为什么?因为隔离性实现是对数据加锁完成的,而insert待插入的数据因为并不存
在,那么一般加锁无法屏蔽这类问题),会造成虽然大部分内容是可重复读的,但是insert的数据在可重复读
情况被读取出来,导致多次查找时,会多查找出来新的记录,就如同产生了幻觉。这种现象,叫做幻读
(phantom read)。很明显,MySQL在RR级别的时候,是解决了幻读问题的(解决的方式是用Next-Key锁
(GAP+行锁)解决的。这块比较难,有兴趣同学了解一下)。
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 4321.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
ysql> commit; --结束事务
Query OK, 0 rows affected (0.00 sec)
mysql> select * from account; --看到更新
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 4321.00 |
| 2 | 李四 | 10000.00 |
| 3 | 王五 | 5432.00 |
+----+--------+----------+
3 rows in set (0.00 sec)

串行化【serializable

--对所有操作全部加锁,进行串行化,不会有问题,但是只要串行化,效率很低,几乎完全不会被采用
--终端A
mysql> set global transaction isolation level serializable;
Query OK, 0 rows affected (0.00 sec)
mysql> select @@tx_isolation;
+----------------+
| @@tx_isolation |
+----------------+
| SERIALIZABLE |
+----------------+
1 row in set, 1 warning (0.00 sec)
mysql> begin; --开启事务,终端B同步开启
Query OK, 0 rows affected (0.00 sec)
mysql> select * from account; --两个读取不会串行化,共享锁
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 4321.00 |
| 2 | 李四 | 10000.00 |
| 3 | 王五 | 5432.00 |
+----+--------+----------+
3 rows in set (0.00 sec)
mysql> update account set blance=1.00 where id=1; --终端A中有更新或者其他操作,会阻
塞。直到终端B事务提交。
Query OK, 1 row affected (18.19 sec)
Rows matched: 1 Changed: 1 Warnings: 0
--终端B
mysql> begin;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from account; --两个读取不会串行化
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 4321.00 |
| 2 | 李四 | 10000.00 |
| 3 | 王五 | 5432.00 |
+----+--------+----------+
3 rows in set (0.00 sec)
mysql> commit; --提交之后,终端A中的update才会提交。
Query OK, 0 rows affected (0.00 sec)

总结:

其中隔离级别越严格,安全性越高,但数据库的并发性能也就越低,往往需要在两者之间找一个平
衡点。
不可重复读的重点是修改和删除:同样的条件 , 你读取过的数据 , 再次读取出来发现值不一样了
幻读的重点在于新增:同样的条件 , 1 次和第 2 次读出来的记录数不一样。
说明: mysql 默认的隔离级别是可重复读,一般情况下不要修改
上面的例子可以看出,事务也有长短事务这样的概念。事务间互相影响,指的是事务在并行执行的
时候,即都没有 commit 的时候,影响会比较大。
一致性 (Consistency)
事务执行的结果,必须使数据库从一个一致性状态,变到另一个一致性状态。当数据库只包含事务
成功提交的结果时,数据库处于一致性状态。如果系统运行发生中断,某个事务尚未完成而被迫中
断,而改未完成的事务对数据库所做的修改已被写入数据库,此时数据库就处于一种不正确(不一
致)的状态。因此一致性是通过原子性来保证的。
其实一致性和用户的业务逻辑强相关,一般MySQL提供技术支持,但是一致性还是要用户业务逻辑做支撑,也就是,一致性,是由用户决定的。而技术上,通过 AID 保证 C。

如何理解隔离性(深度剖析)

多版本并发控制( MVCC )是一种用来解决 - 写冲突 无锁并发控制
为事务分配单向增长的事务 ID ,为每个修改保存一个版本,版本与事务 ID关联,读操作只读该事务开始前的数据库的快照。
所以 MVCC 可以为数据库解决以下问题:
在并发读写数据库时,可以做到在读操作时不用阻塞写操作,写操作也不用阻塞读操作,提高了数
据库并发读写的性能,时还可以解决脏读,幻读,不可重复读等事务隔离问题,但不能解决更新丢失问题。

什么是MVCC

MVCC(Multi-Version Concurrency Control,多版本并发控制)是一种用于数据库管理系统中的并发控制技术,它允许多个事务同时访问数据库中的数据,而不会相互干扰,从而提高系统的并发性能。MVCC通过保存数据对象的不同版本来实现这一目标,这样每个事务都可以看到数据库的一致性快照,即使其他事务正在修改数据。

以下是MVCC的一些关键点:

版本控制:当数据被修改时,MVCC不是直接覆盖旧数据,而是创建一个新的版本(或副本)来保存修改后的数据。旧版本的数据仍然保留,直到不再需要。

事务隔离:MVCC可以提供不同级别的事务隔离,例如可重复读(Repeatable Read)和快照隔离(Snapshot Isolation),这些隔离级别可以防止一些并发问题,如脏读、不可重复读和幻读。

无锁读取:由于读取操作可以访问数据的历史版本,所以在大多数情况下,读取操作不需要锁定数据,这大大减少了锁的竞争,提高了读取操作的并发性。

写操作管理:写操作通常需要额外的管理,以避免与读取操作冲突。这可能涉及到更新数据时创建新版本,以及适当时清除旧版本。

空间和时间开销:虽然MVCC提高了并发性,但它也可能导致额外的空间开销,因为需要存储多个版本的数据。此外,管理多个版本可能会增加CPU和存储的开销。

MVCC在多种数据库管理系统中都有实现,其中最著名的可能是PostgreSQL和Oracle数据库。例如,PostgreSQL使用MVCC来提供高并发性和事务隔离,而Oracle则通过其多版本读一致性(Multi-Version Read Consistency)机制来实现类似的功能。

MVCC是一种复杂的机制,但它为数据库系统提供了强大的并发控制能力,同时保持了良好的性能。

深入理解 MVCC 需要知道三个前提知识:
3 个记录隐藏字段
undo 日志
Read View

3个记录隐藏列字段

DB_TRX_ID 6 byte ,最近修改 ( 修改 / 插入 ) 事务ID ,记录创建这条记录 /最后一次修改该记录的事务 ID
DB_ROLL_PTR : 7 byte 回滚指针,指向这条记录的上一个版本(简单理解成,指向历史版本就
行,这些数据一般在 undo log 中)
DB_ROW_ID : 6 byte ,隐含的自增 ID 隐藏主键),如果数据表没有主键, InnoDB 会自动以
DB_ROW_ID 产生一个聚簇索引
补充:实际还有一个删除 flag 隐藏字段 , 既记录被更新或删除并不代表真的删除,而是删除 flag 变了

undo 日志

MySQL 将来是以服务进程的方式,在内存中运行。我们之前所讲的所有机制:索引,事务,隔离性,日志等,都是在内存中完成的,即在 MySQL 内部的相关缓冲区中,保存相关数据,完成各种判断操作。然后在合适的时候,将相关数据刷新到磁盘当中的。
所以,我们这里理解 undo log ,简单理解成,就是 MySQL 中的一段内存缓冲区,用来保存日志数据
现在有一个事务 10( 仅仅为了好区分 ) ,对 student 表中记录进行修改 (update) :将 name( 张三 ) 改成
name( 李四 )
事务 10, 因为要修改,所以要先给该记录加行锁。
修改前,现将改行记录拷贝到 undo log 中,所以, undo log 中就有了一行副本数据。 ( 原理就是写
时拷贝)所以现在 MySQL 中有两行同样的记录。现在修改原始记录中的 name ,改成 ' 李四 '。并且修改原始记录的隐藏字段 DB_TRX_ID 为当前 事务 10 ID, 我们默认从 10 开始,之后递增。而原始记录的回滚指针 DB_ROLL_PTR 列,里面写入 undo log中副本数据的地址,从而指向副本记录,既表示我的上一个版本就是它。
事务 10 提交,释放锁。
备注:此时,最新的记录是 李四 那条记录。
现在又有一个事务 11 ,对 student 表中记录进行修改 (update) :将 age(28) 改成 age(38)
事务 11, 因为也要修改,所以要先给该记录加行锁。
修改前,现将改行记录拷贝到 undo log 中,所以, undo log 中就又有了一行副本数据。此时,新的
副本,我们采用头插方式,插入 undo log
现在修改原始记录中的 age ,改成 38 。并且修改原始记录的隐藏字段 DB_TRX_ID 为当前 事务 11 的ID 。而原始记录的回滚指针 DB_ROLL_PTR 列,里面写入 undo log中副本数据的地址,从而指向副本记录,既表示我的上一个版本就是它。
事务 11 提交,释放锁。
这样,我们就有了一个基于链表记录的历史版本链。所谓的回滚,无非就是用历史数据,覆盖当前数据。
上面的一个一个版本,我们可以称之为一个一个的快照

Read View

Read View 就是事务进行 快照读 操作的时候生产的 读视图 (Read View),在该事务执行的快照读的那一刻,会生成数据库系统当前的一个快照,记录并维护系统当前活跃事务的 ID(当每个事务开启时,都会被分配一个 ID, 这个 ID 是递增的,所以最新的事务, ID 值越大 )
Read View MySQL 源码中 ,就是一个类,本质是用来进行可见性判断的。 即当我们某个事务执行快照读的时候,对该记录创建一个 Read View 读视图,把它比作条件 ,用来判断当前事务能够看到哪个版本的数据,既可能是当前最新的数据,也有可能是该行记录的 undo log 里面的某个版本的数据。
Read view 是数据库中一个用于事务隔离的机制,它是在某个时间点对数据库中所有活跃事务的一个快照。这个快照包括了当时所有未提交事务的列表和其他一些信息,用于确定事务在读取数据时能够看到哪些版本的数据。
在InnoDB存储引擎中,Read view 的工作原理如下:
当一个事务开始执行一个一致性读(快照读)操作时,它会创建一个 Read view 。
Read view 会记录当前系统中所有活跃的事务ID(即未提交的事务)
在读取数据时,InnoDB会使用 Read view 来确定哪些版本的数据对当前事务是可见的。通常,如果一个数据版本的创建者的事务ID小于 Read view 中的最小活跃事务ID,或者该事务ID在 Read view 创建时已经提交,那么这个数据版本对当前事务是可见的。
快照机制是指数据库在某个时间点为事务提供一个数据库状态的一致性视图。这个视图包含了事务开始时数据库,也不会影响到这个视图的数据状态,即使其他事务在之后修改了数据,快照机制的关键特点包括:
一致性:事务看到的数据是一致的,不会看到其他事务部分完成的修改。
隔离性:事务之间的操作互不干扰,每个事务都好像是在独立的数据库快照上操作。
实现方式:数据库通过保存多个数据版本来实现快照。在InnoDB中,每当数据被修改时,旧版本的数据会被保留,直到没有任何事务需要访问它为止。
在MVCC中,快照机制通常与 Read view 结合使用,以实现以下隔离级别:READCOMMITTED:每个查询都会创建一个新的Read view,因此只能看到已经提交的数据。REPEATABLE READ(InnoDB的默认隔离级别):事务在第一次读取数据时创建一个 Read view,并在整个事务期间使用这个视图,从而实现可重复读。
其实readview就是某个时刻活跃事务的一个快照。

当然,不仅仅是select查询才会生成快照,还有其他生成快照的机制。

在InnoDB存储引擎中,不仅是在执行SELECT语句时可能会生成read vew,而且在任何需要读取数据的操作中都可能生成read view。具体来说,以下几种情况会导致生成read view:
1.启动一个新的事务:当一个新的事务开始时,如果没有显式地指定隔离级别,那么默认情况下会使用REPEATABLE READ隔离级别,此时会生成-个read view。
2.执行SELECT语句:当执行一个SELECT语句时,如果该事务之前没有生成过read view,那么会生成一个新的read view.
3.其他DML操作:除了SELECT之外,UPDATE、DELETE等操作也可能导致生成read view,因为这些操作也需要读取数据来确定要更新的行。

在RR模式下,在本事务中读取的快照是begin开启本事务时截取的快照。

下面是 ReadView 结构,我们简化一下

class ReadView {
// 省略...
private:
/** 高水位,大于等于这个ID的事务均不可见*/
trx_id_t m_low_limit_id
/** 低水位:小于这个ID的事务均可见 */
trx_id_t m_up_limit_id;
/** 创建该 Read View 的事务ID*/
trx_id_t m_creator_trx_id;
/** 创建视图时的活跃事务id列表*/
ids_t m_ids;
/** 配合purge,标识该视图不需要小于m_low_limit_no的UNDO LOG,
* 如果其他视图也不需要,则可以删除小于m_low_limit_no的UNDO LOG*/
trx_id_t m_low_limit_no;
/** 标记视图是否被关闭*/
bool m_closed;
// 省略...
};
我们在实际读取数据版本链的时候,是能读取到每一个版本对应的事务 ID 的,即:当前记录的
DB_TRX_ID
那么,我们现在手里面有的东西就有,当前快照读的 ReadView 和 版本链中的某一个记录的
DB_TRX_ID

所以现在的问题就是,当前快照读,应不应该读到当前版本记录。一张图,解决所有问题!

RR RC的本质区别

正是Read View生成时机的不同,从而造成RC,RR级别下快照读的结果的不同
RR 级别下的某个事务的对某条记录的第一次快照读会创建一个快照及 Read View, 将当前系统活
跃的其他事务记录起来
此后在调用快照读的时候,还是使用的是同一个 Read View ,所以只要当前事务在其他事务提交更
新之前使用过快照读,那么之后的快照读使用的都是同一个 Read View ,所以对之后的修改不可
见;
RR 级别下,快照读生成 Read View 时, Read View 会记录此时所有其他活动事务的快照,这些事
务的修改对于当前事务都是不可见的。而早于 Read View创建的事务所做的修改均是可见,在 RC 级别下的,事务中,每次快照读都会新生成一个快照和 Read View, 这就是我们在 RC级别下的事务中可以看到别的事务提交的更新的原因
总之在 RC 隔离级别下,是每个快照读都会生成并获取最新的 Read View ;而在 RR隔离级别下,则是同一个事务中的第一个快照读才会创建 Read View, 之后的快照读获取的都是同一个 Read View
正是RC每次快照读,都会形成Read View,所以,RC才会有不可重复读问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值