初知C++:红黑树


在这里插入图片描述

初知C++:红黑树

1. 红黑树的概念

红黑树是⼀棵二叉搜索树,他的每个结点增加⼀个存储位来表示结点的颜色,可以是红色或者黑色。通过对任何⼀条从根到叶子的路径上各个结点的颜色进行约束,红黑树确保没有⼀条路径会比其他路径长出2倍,因而是接近平衡的。

1.1 红黑树的规则

  1. 每个结点不是红色就是黑色
  2. 根结点是黑色的
  3. 如果⼀个结点是红色的,则它的两个孩⼦结点必须是黑色的,也就是说任意⼀条路径不会有连续的红色结点
  4. 对于任意⼀个结点,从该结点到其所有NULL结点的简单路径上,均包含相同数量的黑色结点
    (每个叶子结点(NIL)都是黑色的规则。。他这里所指的叶子结点不是传统的意义上的叶子结点,而是我们说的空结点,有些书籍上也把NIL叫做外部结点。NIL是为了方便准确的标识出所有路径)****(NIL是黑色节点)

eg:如下图有6条路径!!!
在这里插入图片描述

1.2 思考⼀下,红黑树如何确保最长路径不超过最短路径的2倍的?

• 由规则4可知,从根到NULL结点的每条路径都有相同数量的黑色结点,所以极端场景下,最短路径
就就是全是黑色结点的路径,假设最短路径⻓度为bh(blackheight)。
• 由规则2和规则3可知,任意⼀条路径不会有连续的红色结点,所以极端场景下,最长的路径就是⼀
黑一红间隔组成,那么最⻓路径的长度为2bh。
• 综合红黑树的4点规则而言,理论上的全⿊最短路径和一黑一红的最长路径并不是在每棵红黑树都
存在的。假设任意⼀条从根到NULL结点路径的⻓度为x,那么bh<=h<=2
bh。

1.3 红黑树的效率:

在这里插入图片描述
红黑树的表达相对AVL树要抽象⼀些,AVL树通过高度差直观的控制了平衡。红黑树通过4条规则的颜色约束,间接的实现了近似平衡,他们效率都是同⼀档次,但是相对而言,插入相同数量的结点,红黑树的旋转次数是更少的,因为他对平衡的控制没那么严格。
在这里插入图片描述

2. 红黑树的实现

2.1 红黑树的结构

在这里插入图片描述

2.2 红黑树的插入

2.2.1 红黑树树插入一个值的大概过程
  1. 插入⼀个值按二叉搜索树规则进行插入,插入后我们只需要观察是否符合红黑树的4条规则。
  2. 如果是空树插入,新增结点是黑色结点。如果是非空树插⼊,新增结点必须红色结点,因为非空树插入,新增黑色结点就破坏了规则4,规则4是很难维护的。
  3. 非空树插⼊后,新增结点必须红色结点,如果父亲结点是黑色的,则没有违反任何规则,插入结束
  4. 非空树插⼊后,新增结点必须红色结点,如果父亲结点是红色的,则违反规则3。进⼀步分析,c是红色,p为红,g必为黑,这三个颜色都固定了,关键的变化看u的情况,需要根据u分为以下几种情况分别处理。

说明:下图中假设我们把新增结点标识为c(cur),c的⽗亲标识为p(parent),p的父亲标识为g(grandfather),p的兄弟标识为u(uncle)。

2.2.2 情况1:变色

c为红,p为红,g为黑,u存在且为红,则将p和u变黑,g变红。在把g当做新的c,继续往上更新。分析:因为p和u都是红色,g是黑色,把p和u变黑,左边子树路径各增加⼀个黑色结点,g再变红,相当于保持g所在子树的黑色结点的数量不变,同时解决了c和p连续红色结点的问题,需要继续往上更新是因为,g是红色,如果g的父亲还是红⾊,那么就还需要继续处理;如果g的父亲是黑色,则处理结束了;如果g就是整棵树的根,再把g变回黑色。

情况1只变色,不旋转。所以无论c是p的左还是右,p是g的左还是右,都是上面的变色处理方式。
在这里插入图片描述
• 跟AVL树类似,图0我们展示了⼀种具体情况,但是实际中需要这样处理的有很多种情况。

• 图1将以上类似的处理进行了抽象表达,d/e/f代表每条路径拥有hb个黑色结点的子树,a/b代表每条路径拥有hb-1个黑色结点的根为红的⼦树,hb>=0。

• 图2/图3/图4,分别展示了在这里插入图片描述
的具体情况组合分析,当hb等于2时,这里组合情况上百亿种,这些样例是帮助我们理解,不论情况多少种,多么复杂,处理方式⼀样的,变色再继续往上处理即可,所以我们只需要看抽象图即可。

图一:
在这里插入图片描述

图二:
在这里插入图片描述

图三:
在这里插入图片描述

图四:
在这里插入图片描述

2.2.3 情况2:单旋+变色

c为红,p为红,g为黑,u不存在或者u存在且为黑,u不存在,则c⼀定是新增结点,u存在且为黑,则c⼀定不是新增,c之前是黑色的,是在c的⼦树中插入,符合情况1,变色将c从黑色变成红色,更新上来的。
分析:p必须变黑,才能解决,连续红⾊结点的问题,u不存在或者是黑色的,这里单纯的变色无法解决问题,需要旋转+变色。
在这里插入图片描述

如果p是g的左,c是p的左,那么以g为旋转点进行右单旋,再把p变黑,g变红即可。p变成课这颗树新的根,这样子树黑色结点的数量不变,没有连续的红色结点了,且不需要往上更新,因为p的父亲是黑色还是红色或者空都不违反规则。
在这里插入图片描述

如果p是g的右,c是p的右,那么以g为旋转点进行左单旋,再把p变黑,g变红即可。p变成课这颗树新的根,这样子树黑色结点的数量不变,没有连续的红色结点了,且不需要往上更新,因为p的父亲是黑色还是红色或者空都不违反规则。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2.4 情况2:双旋+变色

c为红,p为红,g为⿊,u不存在或者u存在且为⿊,u不存在,则c⼀定是新增结点,u存在且为⿊,则c⼀定不是新增,c之前是⿊⾊的,是在c的⼦树中插⼊,符合情况1,变⾊将c从⿊⾊变成红⾊,更新上来的。分析:p必须变⿊,才能解决,连续红⾊结点的问题,u不存在或者是⿊⾊的,这⾥单纯的变⾊⽆法解决问题,需要旋转+变⾊。
在这里插入图片描述

如果p是g的左,c是p的右,那么先以p为旋转点进⾏左单旋,再以g为旋转点进⾏右单旋,再把c变⿊,g变红即可。c变成课这颗树新的根,这样⼦树⿊⾊结点的数量不变,没有连续的红⾊结点了,且不需要往上更新,因为c的⽗亲是⿊⾊还是红⾊或者空都不违反规则。
在这里插入图片描述

如果p是g的右,c是p的左,那么先以p为旋转点进⾏右单旋,再以g为旋转点进⾏左单旋,再把c变⿊,g变红即可。c变成课这颗树新的根,这样⼦树⿊⾊结点的数量不变,没有连续的红⾊结点了,且不需要往上更新,因为c的⽗亲是⿊⾊还是红⾊或者空都不违反规则。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.3 红黑树的插入代码实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.4红黑树的查找

在这里插入图片描述

2.5红黑树的验证

这里获取最长路径和最短路径,检查最长路径不超过最短路径的2倍是不可行的,因为就算满足这个条件,红黑树也可能颜色不满足规则,当前暂时没出问题,后续继续插入还是会出问题的。所以我们还是去检查4点规则,满足这4点规则,⼀定能保证最长路径不超过最短路径的2倍。

1.规则1枚举颜⾊类型,天然实现保证了颜色不是黑色就是红色。

2.规则2直接检查根即可

3.规则3前序遍历检查,遇到红⾊结点查孩子不太方便,因为孩子有两个,且不⼀定存在,反过来检查父亲的颜色就方便多了。

4.规则4前序遍历,遍历过程中用形参记录跟到当前结点的blackNum(黑色结点数量),前序遍历遇到黑色结点就++blackNum,走到空就计算出了⼀条路径的黑色结点数量。再任意⼀条路径黑色结点数量作为参考值,依次比较即可。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值