图像处理(二)

图像处理(2)

  • 裁剪图片

from skimage import io,data

iimg = io.imread(r'D:\工坊\图像处理\十个勤天2.png')

roi=iimg[50:150,120:200,:]

io.imshow(roi)

运行结果:

  • 将图片进行二值化

from skimage import io,data,color

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

img_gray=color.rgb2gray(img)

rows,cols=img_gray.shape

for i in range(rows):

    for j in range(cols):

        if(img_gray[i,j]<=0.5):

            img_gray[i,j]=0

        else:

            img_gray[i,j]=1

io.imshow(img_gray)

运行结果:

  • 图像归一化

        图像归一化是图像处理操作,在将图像的像素值范围缩放到特定的范围或标准化到特定的统计特征。

from skimage import io,data

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

reddish = img[:, :, 0]> 170  #像素值大于170的位置为True,小于为False

img[reddish]=[0, 255, 0]  # [红,绿,蓝]三个通道

io.imshow(img)

print(img.dtype.name)

运行结果:

  •  图像归一化

        图像数据的归一化操作,将像素值线性缩放到指定范围内,加载图像数据,显示图像数据。

import numpy as np

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

normalized_img = (img-np.min(img))/(np.max(img)-np.min(img))

io.imshow(img)

print(img)

运行结果:

  • 查看图片是什么类型的图片(utf-8/float)

from skimage import io,data

img = io.imread(r"D:\工坊\图像处理\十个勤天2.png")

print(img.dtype.name)

运行代码:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值