泊松分布
简介
泊松分布是一种离散概率分布,用于描述在给定时间间隔内随机事件发生的次数。它常用于模拟诸如客户到达商店、电话呼叫接入中心等事件。
参数
泊松分布用一个参数来定义:
λ:事件发生的平均速率,表示在单位时间内事件发生的平均次数。
公式
泊松分布的概率质量函数 (PMF) 给出了在指定时间间隔内发生 k 次事件的概率,计算公式为:
P(k) = e^(-λ) (λ^k) / k!
其中:
e^(-λ):表示没有事件发生的概率。
(λ^k):表示 k 次事件发生的概率。
k!:表示 k 个元素的阶乘,即 k × (k - 1) × (k - 2) × … × 2 × 1。
生成泊松分布数据
NumPy 提供了 random.poisson() 函数来生成服从泊松分布的随机数。该函数接受以下参数:
lam:事件发生的平均速率。
size:输出数组的形状。
示例:生成一个平均速率为 5 的事件在 10 个时间间隔内发生的次数:
import numpy as np
data = np.random.poisson(lam=5, size=10)
print(data)
可视化泊松分布
Seaborn 库提供了便捷的函数来可视化分布,包括泊松分布。
示例:绘制平均速率为 7 的事件在 1000 个时间间隔内发生的次

最低0.47元/天 解锁文章
820

被折叠的 条评论
为什么被折叠?



