POJ - 3372 Candy Distribution

N children standing in circle who are numbered 1 through N clockwise are waiting their candies. Their teacher distributes the candies by in the following way:

First the teacher gives child No.1 and No.2 a candy each. Then he walks clockwise along the circle, skipping one child (child No.3) and giving the next one (child No.4) a candy. And then he goes on his walk, skipping two children (child No.5 and No.6) and giving the next one (child No.7) a candy. And so on.

Now you have to tell the teacher whether all the children will get at least one candy?

Input

The input consists of several data sets, each containing a positive integer N (2 ≤ N ≤ 1,000,000,000).

Output

For each data set the output should be either "YES" or "NO".

Sample

InputcopyOutputcopy
2
3 
4
YES
NO
YES

题目大意:有N个小孩围成一圈,老师先发给第一个小孩一颗糖,然后跳过0个人,给2号小孩发一颗糖,接着跳过1个人,给4号小孩发糖,再跳过2个人,给7号小孩发糖……以此类推,问N个小孩能否每个人得到一颗糖。

思路:

  1. N=4(是2的幂)

    • 发糖的孩子编号序列为:1, 2, 4, 7, 11, 16, ...

    • 对 N=4

       取模,得到:1, 2, 0(即4), 3, 3, 0, ...

    • 实际发糖的孩子编号为:1, 2, 4, 3(循环)。

    • 每个孩子(1, 2, 3, 4)都得到了糖。

  2. N=5(不是2的幂)

    • 发糖的孩子编号序列为:1, 2, 4, 7, 11, 16, ...

    • 对 N=5 取模,得到:1, 2, 4, 2, 1, 1, ...

    • 实际发糖的孩子编号为:1, 2, 4, 2, 1(循环)。

    • 孩子3和5没有得到糖。

  • 当 N 是2的幂时,anmod  N 的序列可以覆盖所有孩子编号。

  • n & (n - 1) 的作用

    • 通过按位与操作 &n 和 n - 1 的共同部分会保留,而最低有效位的 1 会被置为 0

示例:

  • 假设 n = 12,其二进制表示为 1100

    • n - 1 = 11,二进制为 1011

    • n & (n - 1) = 1100 & 1011 = 1000(即 8)。

    • 结果是将最低有效位的 1 置为 0

#include<iostream>
#define  int long long
#define N 1000005
#define INF 0x3f3f3f3f
using namespace std;
signed main()
 {
ios::sync_with_stdio(false);
int x;
while(cin>>x){
    if((x&(x-1))==0) cout<<"YES"<<endl;
    else cout<<"NO"<<endl;
}
    return 0; 
 }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值