N children standing in circle who are numbered 1 through N clockwise are waiting their candies. Their teacher distributes the candies by in the following way:
First the teacher gives child No.1 and No.2 a candy each. Then he walks clockwise along the circle, skipping one child (child No.3) and giving the next one (child No.4) a candy. And then he goes on his walk, skipping two children (child No.5 and No.6) and giving the next one (child No.7) a candy. And so on.
Now you have to tell the teacher whether all the children will get at least one candy?
Input
The input consists of several data sets, each containing a positive integer N (2 ≤ N ≤ 1,000,000,000).
Output
For each data set the output should be either "YES" or "NO".
Sample
Inputcopy | Outputcopy |
---|---|
2 3 4 | YES NO YES |
题目大意:有N个小孩围成一圈,老师先发给第一个小孩一颗糖,然后跳过0个人,给2号小孩发一颗糖,接着跳过1个人,给4号小孩发糖,再跳过2个人,给7号小孩发糖……以此类推,问N个小孩能否每个人得到一颗糖。
思路:
-
N=4(是2的幂):
-
发糖的孩子编号序列为:1, 2, 4, 7, 11, 16, ...
-
对 N=4
取模,得到:1, 2, 0(即4), 3, 3, 0, ...
-
实际发糖的孩子编号为:1, 2, 4, 3(循环)。
-
每个孩子(1, 2, 3, 4)都得到了糖。
-
-
N=5(不是2的幂):
-
发糖的孩子编号序列为:1, 2, 4, 7, 11, 16, ...
-
对 N=5 取模,得到:1, 2, 4, 2, 1, 1, ...
-
实际发糖的孩子编号为:1, 2, 4, 2, 1(循环)。
-
孩子3和5没有得到糖。
-
-
当 N 是2的幂时,anmod N 的序列可以覆盖所有孩子编号。
-
n & (n - 1)
的作用:-
通过按位与操作
&
,n
和n - 1
的共同部分会保留,而最低有效位的1
会被置为0
。
-
示例:
-
假设
n = 12
,其二进制表示为1100
。-
n - 1 = 11
,二进制为1011
。 -
n & (n - 1) = 1100 & 1011 = 1000
(即8
)。 -
结果是将最低有效位的
1
置为0
。
-
#include<iostream>
#define int long long
#define N 1000005
#define INF 0x3f3f3f3f
using namespace std;
signed main()
{
ios::sync_with_stdio(false);
int x;
while(cin>>x){
if((x&(x-1))==0) cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}
return 0;
}