针对SVM算法初步研究

归纳编程学习的感悟,
记录奋斗路上的点滴,
希望能帮到一样刻苦的你!
如有不足欢迎指正!
共同学习交流!
🌎欢迎各位→点赞 👍+ 收藏⭐ + 留言​📝

心态决定高度,细节决定成败!

  

初识SVM算法:

        支持向量机(Support Vector Machine, SVM)是一种监督学习算法,主要用于分类和回归分析。SVM的基本模型是定义在特征空间上的间隔最大的线性分类器,其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)。在分类任务中,SVM试图找到一个超平面来区分不同类别的数据,这个超平面不仅需要正确地分类训练数据,而且还要确保两类数据到这个超平面的距离最大化,这样可以使得模型具备更好的泛化能力。

        SVM能够执行线性或非线性分类、回归,甚至是异常值检测任务。它是机器学习领域最受欢

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梵豪

你的鼓励将是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值