目录
Semaphore
# ### 信号量 Semaphore 本质上就是锁,只不过是多个进程上多把锁,可以控制上锁的数量
"""Semaphore = lock + 数量 """
from multiprocessing import Semaphore , Process
import time , random
"""
# 同一时间允许多个进程上5把锁
sem = Semaphore(5)
#上锁
sem.acquire()
print("执行操作 ... ")
#解锁
sem.release()
"""
def singsong_ktv(person,sem):
# 上锁
sem.acquire()
print("{}进入了唱吧ktv , 正在唱歌 ~".format(person))
# 唱一段时间
time.sleep( random.randrange(4,8) ) # 4 5 6 7
print("{}离开了唱吧ktv , 唱完了 ... ".format(person))
# 解锁
sem.release()
if __name__ == "__main__":
sem = Semaphore(5)
lst = []
p = Process(target=singsong_ktv , args = (i , sem) )
p.start()
事件 (Event)
# ### 事件 (Event)
"""
# 阻塞事件 :
e = Event()生成事件对象e
e.wait()动态给程序加阻塞 , 程序当中是否加阻塞完全取决于该对象中的is_set() [默认返回值是False]
# 如果是True 不加阻塞
# 如果是False 加阻塞
# 控制这个属性的值
# set()方法 将这个属性的值改成True
# clear()方法 将这个属性的值改成False
# is_set()方法 判断当前的属性是否为True (默认上来是False)
"""
from multiprocessing import Process,Event
import time , random
# 1
'''
e = Event()
# 默认属性值是False.
print(e.is_set())
# 判断内部成员属性是否是False
e.wait()
# 如果是False , 代码程序阻塞
print(" 代码执行中 ... ")
'''
# 2
'''
e = Event()
# 将这个属性的值改成True
e.set()
# 判断内部成员属性是否是True
e.wait()
# 如果是True , 代码程序不阻塞
print(" 代码执行中 ... ")
# 将这个属性的值改成False
e.clear()
e.wait()
print(" 代码执行中 .... 2")
'''
# 3
"""
e = Event()
# wait(3) 代表最多等待3秒;
e.wait(3)
print(" 代码执行中 .... 3")
"""
进程队列:
# ### 进程队列
from multiprocessing import Process,Queue
# 引入线程模块; 为了捕捉queue.Empty异常;
import queue
# 1.基本语法
"""顺序: 先进先出,后进后出"""
# 创建进程队列
q = Queue()
# put() 存放
q.put(1)
q.put(2)
q.put(3)
# get() 获取
"""在获取不到任何数据时,会出现阻塞"""
# print( q.get() )
# print( q.get() )
# print( q.get() )
# print( q.get() )
# get_nowait() 拿不到数据报异常
"""[windows]效果正常 [linux]不兼容"""
try:
print( q.get_nowait() )
print( q.get_nowait() )
print( q.get_nowait() )
print( q.get_nowait() )
except : #queue.Empty
pass
# put_nowait() 非阻塞版本的put
# 设置当前队列最大长度为3 ( 元素个数最多是3个 )
"""在指定队列长度的情况下,如果塞入过多的数据,会导致阻塞"""
# q2 = Queue(3)
# q2.put(111)
# q2.put(222)
# q2.put(333)
# q2.put(444)
"""使用put_nowait 在队列已满的情况下,塞入数据会直接报错"""
q2 = Queue(3)
try:
q2.put_nowait(111)
q2.put_nowait(222)
q2.put_nowait(333)
q2.put_nowait(444)
except:
pass
# 2.进程间的通信IPC
def func(q):
# 2.子进程获取主进程存放的数据
res = q.get()
print(res,"<22>")
# 3.子进程中存放数据
q.put("刘一缝")
if __name__ == "__main__":
q3 = Queue()
p = Process(target=func,args=(q3,))
p.start()
# 1.主进程存入数据
q3.put("赵凤勇")
# 为了等待子进程把数据存放队列后,主进程在获取数据;
p.join()
# 4.主进程获取子进程存放的数据
print(q3.get() , "<33>")
JoinableQueue 队列:
"""
put 存放
get 获取
task_done 计算器属性值-1
join 配合task_done来使用 , 阻塞
put 一次数据, 队列的内置计数器属性值+1
get 一次数据, 通过task_done让队列的内置计数器属性值-1
join: 会根据队列计数器的属性值来判断是否阻塞或者放行
队列计数器属性是 等于 0 , 代码不阻塞放行
队列计数器属性是 不等 0 , 意味着代码阻塞
"""
from multiprocessing import JoinableQueue
jq = JoinableQueue()
jq.put("王同培") # +1
jq.put("王伟") # +2
print(jq.get())
print(jq.get())
# print(jq.get()) 阻塞
jq.task_done() # -1
jq.task_done() # -1
jq.join()
print(" 代码执行结束 .... ")
# ### 2.使用JoinableQueue 改造生产着消费者模型
from multiprocessing import Process,Queue
import time,random
# 消费者模型
def consumer(q,name):
while True:
# 获取队列中的数据
food = q.get()
time.sleep(random.uniform(0.1,1))
print("{}吃了{}".format(name,food))
# 让队列的内置计数器属性-1
q.task_done()
# 生产者模型
def producer(q,name,food):
for i in range(5):
time.sleep(random.uniform(0.1,1))
# 展示生产的数据
print( "{}生产了{}".format( name , food+str(i) ) )
# 存储生产的数据在队列中
q.put(food+str(i))
if __name__ == "__main__":
q = JoinableQueue()
p1 = Process( target=consumer,args=(q , "赵万里") )
p2 = Process( target=producer,args=(q , "赵沈阳" , "香蕉" ) )
p1.daemon = True
p1.start()
p2.start()
p2.join()
# 必须等待队列中的所有数据全部消费完毕,再放行
q.join()
print("程序结束 ... ")