请教一下各位大神,代码没有报错,但是图没画出来

本文介绍了如何使用Python的scikit-learn库中的`learning_curve`函数来绘制模型的学习曲线,以评估LinearSVC和SVC分类器在不同训练样本数量下的性能。它展示了训练集和交叉验证集的得分变化,有助于选择最佳模型复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import matplotlib.pyplot as plt
from sklearn.svm import LinearSVC
import numpy as np
from sklearn.model_selection import learning_curve
from sklearn.svm import SVC
from sklearn.datasets import load_digits


# 绘制学习曲线,以确定模型的状况
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
                        train_sizes=np.linspace(.1, 1.0, 5)):
    """
    画出data在某模型上的learning curve.
    参数解释
    ----------
    estimator : 你用的分类器。
    title : 表格的标题。
    X : 输入的feature,numpy类型
    y : 输入的target vector
    ylim : tuple格式的(ymin, ymax), 设定图像中纵坐标的最低点和最高点
    cv : 做cross-validation的时候,数据分成的份数,其中一份作为cv集,其余n-1份作为training(默认为3份)
    """

    plt.figure()
    train_sizes, train_scores, test_scores = learning_curve(
        estimator, X, y, cv=5, n_jobs=1, train_sizes=train_sizes)
    train_scores_mean = np.mean(train_scores, axis=1)
    train_scores_std = np.std(train_scores, axis=1)
    test_scores_mean = np.mean(test_scores, axis=1)
    test_scores_std = np.std(test_scores, axis=1)

    plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                     train_scores_mean + train_scores_std, alpha=0.1,
                     color="r")
    plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
                     test_scores_mean + test_scores_std, alpha=0.1, color="g")
    plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
             label="Training score")
    plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
             label="Cross-validation score")

    plt.xlabel("Training examples")
    plt.ylabel("Score")
    plt.legend(loc="best")
    plt.grid("on")
    if ylim:
        plt.ylim(ylim)
    plt.title(title)
    plt.show()

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值