介绍
本节我们使用两个循环神经网络的编码器和解码器, 并将其应用于序列到序列(sequence to sequence,seq2seq)类的学习任务。遵循编码器-解码器架构的设计原则, 循环神经网络编码器使用长度可变的序列作为输入, 将其转换为固定形状的隐状态。 换言之,输入序列的信息被编码到循环神经网络编码器的隐状态中。
结构
首先,我们使用上一节提到的编码器-解码器结构,其中编码器使用一个双隐层的门控循环单元构成的循环神经网络(链接均为我之前发布的博客笔记,seq2seq是基于之前这几节的内容的)。而解码器使用一个双隐层的门控循环单元构成的循环神经网络,后接一个全连接层。