import gym
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
import threading
import multiprocessing
import os
# 定义Actor-Critic模型
class ActorCriticModel(tf.keras.Model):
def __init__(self, state_size, action_size):
super(ActorCriticModel, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.dense1 = Dense(128, activation='relu') # 第一个隐藏层
self.policy_logits = Dense(action_size) # 输出动作概率的层
self.dense2 = Dense(128, activation='relu') # 第二个隐藏层
self.values = Dense(1) # 输出状态值的层
def call(self, inputs):
x = self.dense1(inputs)
logits = self.policy_logits(x) # 计算动作概率
v = self.dense2(inputs)
values = self.values(v)
A3C 算法的简单实现(ChatGPT)
于 2023-07-19 16:12:57 首次发布