最后
分享一些系统的面试题,大家可以拿去刷一刷,准备面试涨薪。
这些面试题相对应的技术点:
- JVM
- MySQL
- Mybatis
- MongoDB
- Redis
- Spring
- Spring boot
- Spring cloud
- Kafka
- RabbitMQ
- Nginx
- …
大类就是:
- Java基础
- 数据结构与算法
- 并发编程
- 数据库
- 设计模式
- 微服务
- 消息中间件
再看一种中断的方法:
static volatile boolean isStop = false;
public static void main(String[] args) throws InterruptedException {
Thread thread1 = new Thread() {
@Override
public void run() {
while (true) {
if (isStop) {
System.out.println(“我要退出了!”);
break;
}
}
}
};
thread1.setName(“thread1”);
thread1.start();
TimeUnit.SECONDS.sleep(1);
isStop = true;
}
代码中通过一个变量isStop来控制线程是否停止。
通过变量控制和线程自带的interrupt方法来中断线程有什么区别呢?
如果一个线程调用了sleep方法,一直处于休眠状态,通过变量控制,还可以中断线程么?大家可以思考一下。
此时只能使用线程提供的interrupt方法来中断线程了。
public static void main(String[] args) throws InterruptedException {
Thread thread1 = new Thread() {
@Override
public void run() {
while (true) {
//休眠100秒
try {
TimeUnit.SECONDS.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(“我要退出了!”);
break;
}
}
};
thread1.setName(“thread1”);
thread1.start();
TimeUnit.SECONDS.sleep(1);
thread1.interrupt();
}
调用interrupt()方法之后,线程的sleep方法将会抛出 InterruptedException
异常。
Thread thread1 = new Thread() {
@Override
public void run() {
while (true) {
//休眠100秒
try {
TimeUnit.SECONDS.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
if (this.isInterrupted()) {
System.out.println(“我要退出了!”);
break;
}
}
}
};
运行上面的代码,发现程序无法终止。为什么?
代码需要改为:
Thread thread1 = new Thread() {
@Override
public void run() {
while (true) {
//休眠100秒
try {
TimeUnit.SECONDS.sleep(100);
} catch (InterruptedException e) {
this.interrupt();
e.printStackTrace();
}
if (this.isInterrupted()) {
System.out.println(“我要退出了!”);
break;
}
}
}
};
上面代码可以终止。
注意:sleep方法由于中断而抛出异常之后,线程的中断标志会被清除(置为false),所以在异常中需要执行this.interrupt()方法,将中断标志位置为true
等待(wait)和通知(notify)
为了支持多线程之间的协作,JDK提供了两个非常重要的方法:等待wait()方法和通知notify()方法。这2个方法并不是在Thread类中的,而是在Object类中定义的。这意味着所有的对象都可以调用者两个方法。
public final void wait() throws InterruptedException;
public final native void notify();
当在一个对象实例上调用wait()方法后,当前线程就会在这个对象上等待。这是什么意思?比如在线程A中,调用了obj.wait()方法,那么线程A就会停止继续执行,转为等待状态。等待到什么时候结束呢?线程A会一直等到其他线程调用obj.notify()方法为止,这时,obj对象成为了多个线程之间的有效通信手段。
那么wait()方法和notify()方法是如何工作的呢?如图2.5展示了两者的工作过程。如果一个线程调用了object.wait()方法,那么它就会进出object对象的等待队列。这个队列中,可能会有多个线程,因为系统可能运行多个线程同时等待某一个对象。当object.notify()方法被调用时,它就会从这个队列中随机选择一个线程,并将其唤醒。这里希望大家注意一下,这个选择是不公平的,并不是先等待线程就会优先被选择,这个选择完全是随机的。
除notify()方法外,Object独享还有一个nofiyAll()方法,它和notify()方法的功能类似,不同的是,它会唤醒在这个等待队列中所有等待的线程,而不是随机选择一个。
这里强调一点,Object.wait()方法并不能随便调用。它必须包含在对应的synchronize语句汇总,无论是wait()方法或者notify()方法都需要首先获取目标独享的一个监视器。图2.6显示了wait()方法和nofiy()方法的工作流程细节。其中T1和T2表示两个线程。T1在正确执行wait()方法钱,必须获得object对象的监视器。而wait()方法在执行后,会释放这个监视器。这样做的目的是使其他等待在object对象上的线程不至于因为T1的休眠而全部无法正常执行。
线程T2在notify()方法调用前,也必须获得object对象的监视器。所幸,此时T1已经释放了这个监视器,因此,T2可以顺利获得object对象的监视器。接着,T2执行了notify()方法尝试唤醒一个等待线程,这里假设唤醒了T1。T1在被唤醒后,要做的第一件事并不是执行后续代码,而是要尝试重新获得object对象的监视器,而这个监视器也正是T1在wait()方法执行前所持有的那个。如果暂时无法获得,则T1还必须等待这个监视器。当监视器顺利获得后,T1才可以在真正意义上继续执行。
给大家上个例子:
package com.itsoku.chat01;
/**
-
<b>description</b>:<br>
-
<b>time</b>:2019/7/12 17:18 <br>
-
<b>author</b>:微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注!
*/
public class Demo06 {
static Object object = new Object();
public static class T1 extends Thread {
@Override
public void run() {
synchronized (object) {
System.out.println(System.currentTimeMillis() + “:T1 start!”);
try {
System.out.println(System.currentTimeMillis() + “:T1 wait for object”);
object.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(System.currentTimeMillis() + “:T1 end!”);
}
}
}
public static class T2 extends Thread {
@Override
public void run() {
synchronized (object) {
System.out.println(System.currentTimeMillis() + ":T2 start,notify one thread! ");
object.notify();
System.out.println(System.currentTimeMillis() + “:T2 end!”);
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
public static void main(String[] args) throws InterruptedException {
new T1().start();
new T2().start();
}
}
运行结果:
1562934497212:T1 start!
1562934497212:T1 wait for object
1562934497212:T2 start,notify one thread!
1562934497212:T2 end!
1562934499213:T1 end!
注意下打印结果,T2调用notify方法之后,T1并不能立即继续执行,而是要等待T2释放objec投递锁之后,T1重新成功获取锁后,才能继续执行。因此最后2行日志相差了2秒(因为T2调用notify方法后休眠了2秒)。
注意:Object.wait()方法和Thread.sleeep()方法都可以让现场等待若干时间。除wait()方法可以被唤醒外,另外一个主要的区别就是wait()方法会释放目标对象的锁,而Thread.sleep()方法不会释放锁。
再给大家讲解一下wait(),notify(),notifyAll(),加深一下理解:
可以这么理解,obj对象上有2个队列,如图1,q1:等待队列,q2:准备获取锁的队列;两个队列都为空。
obj.wait()过程:
synchronize(obj){
obj.wait();
}
假如有3个线程,t1、t2、t3同时执行上面代码,t1、t2、t3会进入q2队列,如图2,进入q2的队列的这些线程才有资格去争抢obj的锁,假设t1争抢到了,那么t2、t3机型在q2中等待着获取锁,t1进入代码块执行wait()方法,此时t1会进入q1队列,然后系统会通知q2队列中的t2、t3去争抢obj的锁,抢到之后过程如t1的过程。最后t1、t2、t3都进入了q1队列,如图3。
上面过程之后,又来了线程t4执行了notify()方法,如下:**
synchronize(obj){
obj.notify();
}
t4会获取到obj的锁,然后执行notify()方法,系统会从q1队列中随机取一个线程,将其加入到q2队列,假如t2运气比较好,被随机到了,然后t2进入了q2队列,如图4,进入q2的队列的锁才有资格争抢obj的锁,t4线程执行完毕之后,会释放obj的锁,此时队列q2中的t2会获取到obj的锁,然后继续执行,执行完毕之后,q1中包含t1、t3,q2队列为空,如图5
接着又来了个t5队列,执行了notifyAll()方法,如下:
synchronize(obj){
obj.notifyAll();
}
2.调用obj.wait()方法,当前线程会加入队列queue1,然后会释放obj对象的锁
t5会获取到obj的锁,然后执行notifyAll()方法,系统会将队列q1中的线程都移到q2中,如图6,t5线程执行完毕之后,会释放obj的锁,此时队列q2中的t1、t3会争抢obj的锁,争抢到的继续执行,未增强到的带锁释放之后,系统会通知q2中的线程继续争抢索,然后继续执行,最后两个队列中都为空了。
挂起(suspend)和继续执行(resume)线程
Thread类中还有2个方法,即线程挂起(suspend)和继续执行(resume),这2个操作是一对相反的操作,被挂起的线程,必须要等到resume()方法操作后,才能继续执行。系统中已经标注着2个方法过时了,不推荐使用。
系统不推荐使用suspend()方法去挂起线程是因为suspend()方法导致线程暂停的同时,并不会释放任何锁资源。此时,其他任何线程想要访问被它占用的锁时,都会被牵连,导致无法正常运行(如图2.7所示)。直到在对应的线程上进行了resume()方法操作,被挂起的线程才能继续,从而其他所有阻塞在相关锁上的线程也可以继续执行。但是,如果resume()方法操作意外地在suspend()方法前就被执行了,那么被挂起的线程可能很难有机会被继续执行了。并且,更严重的是:它所占用的锁不会被释放,因此可能会导致整个系统工作不正常。而且,对于被挂起的线程,从它线程的状态上看,居然还是Runnable状态,这也会影响我们队系统当前状态的判断。
上个例子:
/**
-
<b>description</b>:<br>
-
<b>time</b>:2019/7/12 17:18 <br>
-
<b>author</b>:微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注!
*/
public class Demo07 {
static Object object = new Object();
public static class T1 extends Thread {
public T1(String name) {
super(name);
}
@Override
public void run() {
synchronized (object) {
System.out.println("in " + this.getName());
Thread.currentThread().suspend();
}
}
}
public static void main(String[] args) throws InterruptedException {
T1 t1 = new T1(“t1”);
t1.start();
Thread.sleep(100);
T1 t2 = new T1(“t2”);
t2.start();
t1.resume();
t2.resume();
t1.join();
t2.join();
}
}
运行代码输出:
in t1
in t2
我们会发现程序不会结束,线程t2被挂起了,导致程序无法结束,使用jstack命令查看线程堆栈信息可以看到:
“t2” #13 prio=5 os_prio=0 tid=0x000000002796c000 nid=0xa3c runnable [0x000000002867f000]
java.lang.Thread.State: RUNNABLE
at java.lang.Thread.suspend0(Native Method)
at java.lang.Thread.suspend(Thread.java:1029)
at com.itsoku.chat01.Demo07$T1.run(Demo07.java:20)
- locked <0x0000000717372fc0> (a java.lang.Object)
发现t2线程在suspend0处被挂起了,t2的状态竟然还是RUNNABLE状态,线程明明被挂起了,状态还是运行中容易导致我们队当前系统进行误判,代码中已经调用resume()方法了,但是由于时间先后顺序的缘故,resume并没有生效,这导致了t2永远滴被挂起了,并且永远占用了object的锁,这对于系统来说可能是致命的。
等待线程结束(join)和谦让(yeild)
很多时候,一个线程的输入可能非常依赖于另外一个或者多个线程的输出,此时,这个线程就需要等待依赖的线程执行完毕,才能继续执行。jdk提供了join()操作来实现这个功能。如下所示,显示了2个join()方法:
public final void join() throws InterruptedException;
public final synchronized void join(long millis) throws InterruptedException;
第1个方法表示无限等待,它会一直只是当前线程。知道目标线程执行完毕。
第2个方法有个参数,用于指定等待时间,如果超过了给定的时间目标线程还在执行,当前线程也会停止等待,而继续往下执行。
比如:线程T1需要等待T2、T3完成之后才能继续执行,那么在T1线程中需要分别调用T2和T3的join()方法。
上个示例:
/**
-
<b>description</b>:<br>
-
<b>time</b>:2019/7/12 17:18 <br>
-
<b>author</b>:微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注!
*/
public class Demo08 {
static int num = 0;
public static class T1 extends Thread {
public T1(String name) {
super(name);
}
@Override
public void run() {
System.out.println(System.currentTimeMillis() + ",start " + this.getName());
for (int i = 0; i < 10; i++) {
num++;
try {
总目录展示
该笔记共八个节点(由浅入深),分为三大模块。
高性能。 秒杀涉及大量的并发读和并发写,因此支持高并发访问这点非常关键。该笔记将从设计数据的动静分离方案、热点的发现与隔离、请求的削峰与分层过滤、服务端的极致优化这4个方面重点介绍。
一致性。 秒杀中商品减库存的实现方式同样关键。可想而知,有限数量的商品在同一时刻被很多倍的请求同时来减库存,减库存又分为“拍下减库存”“付款减库存”以及预扣等几种,在大并发更新的过程中都要保证数据的准确性,其难度可想而知。因此,将用一个节点来专门讲解如何设计秒杀减库存方案。
高可用。 虽然介绍了很多极致的优化思路,但现实中总难免出现一些我们考虑不到的情况,所以要保证系统的高可用和正确性,还要设计一个PlanB来兜底,以便在最坏情况发生时仍然能够从容应对。笔记的最后,将带你思考可以从哪些环节来设计兜底方案。
篇幅有限,无法一个模块一个模块详细的展示(这些要点都收集在了这份《高并发秒杀顶级教程》里),麻烦各位转发一下(可以帮助更多的人看到哟!)
由于内容太多,这里只截取部分的内容。
和并发写,因此支持高并发访问这点非常关键。该笔记将从设计数据的动静分离方案、热点的发现与隔离、请求的削峰与分层过滤、服务端的极致优化这4个方面重点介绍。
一致性。 秒杀中商品减库存的实现方式同样关键。可想而知,有限数量的商品在同一时刻被很多倍的请求同时来减库存,减库存又分为“拍下减库存”“付款减库存”以及预扣等几种,在大并发更新的过程中都要保证数据的准确性,其难度可想而知。因此,将用一个节点来专门讲解如何设计秒杀减库存方案。
高可用。 虽然介绍了很多极致的优化思路,但现实中总难免出现一些我们考虑不到的情况,所以要保证系统的高可用和正确性,还要设计一个PlanB来兜底,以便在最坏情况发生时仍然能够从容应对。笔记的最后,将带你思考可以从哪些环节来设计兜底方案。
篇幅有限,无法一个模块一个模块详细的展示(这些要点都收集在了这份《高并发秒杀顶级教程》里),麻烦各位转发一下(可以帮助更多的人看到哟!)
[外链图片转存中…(img-TjiKKBa2-1715642080918)]
[外链图片转存中…(img-LSgeEG5b-1715642080918)]
由于内容太多,这里只截取部分的内容。