二叉搜索树的结构
二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;它的左、右子树也分别为二叉搜索树。(摘自百度百科)
给定一系列互不相等的整数,将它们顺次插入一棵初始为空的二叉搜索树,然后对结果树的结构进行描述。你需要能判断给定的描述是否正确。例如将{ 2 4 1 3 0 }插入后,得到一棵二叉搜索树,则陈述句如“2是树的根”、“1和4是兄弟结点”、“3和0在同一层上”(指自顶向下的深度相同)、“2是4的双亲结点”、“3是4的左孩子”都是正确的;而“4是2的左孩子”、“1和3是兄弟结点”都是不正确的。
输入格式:
输入在第一行给出一个正整数N(≤100),随后一行给出N个互不相同的整数,数字间以空格分隔,要求将之顺次插入一棵初始为空的二叉搜索树。之后给出一个正整数M(≤100),随后M行,每行给出一句待判断的陈述句。陈述句有以下6种:
A is the root,即"A是树的根";
A and B are siblings,即"A和B是兄弟结点";
A is the parent of B,即"A是B的双亲结点";
A is the left child of B,即"A是B的左孩子";
A is the right child of B,即"A是B的右孩子";
A and B are on the same level,即"A和B在同一层上"。
题目保证所有给定的整数都在整型范围内。
输出格式:
对每句陈述,如果正确则输出Yes,否则输出No,每句占一行。
输入样例:
5
2 4 1 3 0
8
2 is the root
1 and 4 are siblings
3 and 0 are on the same level
2 is the parent of 4
3 is the left child of 4
1 is the right child of 2
4 and 0 are on the same level
100 is the right child of 3
输出样例:
Yes
Yes
Yes
Yes
Yes
No
No
No
#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
map<int,int> mp;
const int N = 200010, mod = 1e9+7;
int T, n, m;
int a[N];
struct node{
int x, left, right;
int flor;
int fa;
}node[N];
int cnt;
void dfs(int x, int u)
{
if(x < node[u].x)
{
if(!node[u].left)
{
cnt++;
node[cnt].x = x;
node[u].left = cnt;
node[cnt].fa = u;
node[cnt].flor = node[u].flor + 1;
mp[x] = cnt;
}
else{
dfs(x, node[u].left);
}
}
else
{
if(!node[u].right)
{
cnt++;
node[cnt].x = x;
node[u].right = cnt;
node[cnt].fa = u;
node[cnt].flor = node[u].flor + 1;
mp[x] = cnt;
}
else{
dfs(x, node[u].right);
}
}
}
signed main(){
cin>>n;
int x; cin>>x; //先确定根节点
node[1].x = x;
node[1].flor = 1;
mp[x] = 1;
cnt = 1;
for(int i=2;i<=n;i++)
{
cin>>x;
dfs(x, 1);
}
cin>>m;
string s;
getline(cin, s);
while(m--)
{
getline(cin, s);
int x = 0, y = 0;
if(s.find("root") != s.npos)
{
sscanf(s.c_str(), "%d is the root", &x);
if(mp[x] == 1) cout<<"Yes\n";
else cout<<"No\n";
}
if(s.find("siblings") != s.npos)
{
sscanf(s.c_str(), "%d and %d are siblings", &x, &y);
x = mp[x], y = mp[y];
if(!x || !y) cout<<"No\n"; //需要先判断该值是否在树中
else if(node[x].fa != node[y].fa) cout<<"No\n";
else cout<<"Yes\n";
}
if(s.find("parent") != s.npos)
{
sscanf(s.c_str(), "%d is the parent of %d", &x, &y);
x = mp[x], y = mp[y];
if(!x || !y) cout<<"No\n";
else if(node[y].fa == x) cout<<"Yes\n";
else cout<<"No\n";
}
if(s.find("left") != s.npos)
{
sscanf(s.c_str(), "%d is the left child of %d", &x, &y);
x = mp[x], y = mp[y];
if(!x || !y) cout<<"No\n";
else if(node[y].left == x) cout<<"Yes\n";
else cout<<"No\n";
}
if(s.find("right") != s.npos)
{
sscanf(s.c_str(), "%d is the right child of %d", &x, &y);
x = mp[x], y = mp[y];
if(!x || !y) cout<<"No\n";
else if(node[y].right == x) cout<<"Yes\n";
else cout<<"No\n";
}
if(s.find("level") != s.npos)
{
sscanf(s.c_str(), "%d and %d are on the same level", &x, &y);
x = mp[x], y = mp[y];
if(!x || !y) cout<<"No\n";
else if(node[y].flor == node[x].flor) cout<<"Yes\n";
else cout<<"No\n";
}
}
return 0;
}
1134

被折叠的 条评论
为什么被折叠?



