Day6 微服务 Elasticsearch搜索引擎、Kibana编写请求、倒序索引、正向索引、IK分词器、索引库操作、文档操作、JavaRestClient客户端

目录

1.初识elasticsearch

1.1 认识和安装

1.1.1 安装elasticsearch

1.1.2 安装Kibana

1.2 倒排索引

1.2.1 正向索引

1.2.2 倒排索引

1.2.3 正向和倒排

1.3 基础概念

1.3.1 文档和字段

1.3.2 索引和映射

1.3.3 mysql与elasticsearch

1.4 IK分词器

1.4.1 安装IK分词器

1.4.2 使用IK分词器

1.4.3 拓展词典

1.4.4 总结

2.索引库操作

2.1 Mapping映射属性

2.2 索引库的CRUD

2.2.1 创建索引库和映射

2.2.2 查询索引库

2.2.3 修改索引库

2.2.4 删除索引库

2.2.5 总结

3.文档操作

3.1 新增文档

3.2 查询文档

3.3 删除文档

3.4 修改文档

3.4.1 全量修改

3.4.2 局部修改

3.5 批处理

3.6 总结

4.RestAPI

4.1 初始化RestClient

4.1 创建索引库

4.1.1 Mapping映射

4.1.2 创建索引

4.2 删除索引库

4.3 判断索引库是否存在

4.4 总结

5.RestClient操作文档

5.1 新增文档

5.1.1 实体类

5.1.2 API语法

5.1.3 完整代码

5.2 查询文档

5.2.1 语法说明

5.2.2 完整代码

5.3 删除文档

5.4 修改文档

5.4.1 语法说明

5.4.2 完整代码

5.5 批量导入文档

5.5.1 语法说明

5.5.2 完整代码

5.6 小结


黑马商城作为一个电商项目,商品的搜索肯定是访问频率最高的页面之一。目前搜索功能是基于数据库的模糊搜索来实现的,存在很多问题。

首先,查询效率较低。

由于数据库模糊查询不走索引,在数据量较大的时候,查询性能很差。黑马商城的商品表中仅仅有不到9万条数据,基于数据库查询时,搜索接口的表现如图:

改为基于搜索引擎后,查询表现如下:

注意事项:需要注意的是,数据库模糊查询随着表数据量的增多,查询性能的下降会非常明显,而搜索引擎的性能则不会随着数据增多而下降太多。

其次,功能单一

数据库的模糊搜索功能单一,匹配条件非常苛刻,必须恰好包含用户搜索的关键字。而在搜索引擎中,用户输入出现个别错字,或者用拼音搜索、同义词搜索都能正确匹配到数据。

综上,在面临海量数据的搜索,或者有一些复杂搜索需求的时候,推荐使用专门的搜索引擎来实现搜索功能。

目前全球的搜索引擎技术排名如下:

elasticsearch是一款非常强大的开源搜索引擎,支持的功能非常多,例如:代码搜索、商品搜索、

解决方案搜索、地图搜索等。

1.初识Elasticsearch

Elasticsearch的官方网站如下:Elasticsearch:官方分布式搜索和分析引擎 | Elastic

1.1 认识和安装

Elasticsearch是由elastic公司开发的一套搜索引擎技术它是elastic技术栈中的一部分。

完整的技术栈包括:

  • Elasticsearch:用于数据存储、计算和搜索

  • Logstash/Beats:用于数据收集

  • Kibana:用于数据可视化

而我们要安装的内容包含2部分:

  • elasticsearch:数据存储、搜索和运算。

  • kibana:图形化展示,用来操作elasticsearch。

首先Elasticsearch不用多说,是提供核心的数据存储、搜索、分析功能的。

然后是Kibana,Elasticsearch对外提供的是Restful风格的API,任何操作都可以通过发送http请求来完成。不过http请求的方式、路径、还有请求参数的格式都有严格的规范。这些规范我们肯定记不住,因此我们要借助于Kibana这个服务。

Kibana是elastic公司提供的用于操作Elasticsearch的可视化控制台。它的功能非常强大,包括:

  • 对Elasticsearch数据的搜索、展示

  • 对Elasticsearch数据的统计、聚合,并形成图形化报表、图形

  • 对Elasticsearch的集群状态监控

  • 它还提供了一个开发控制台(DevTools)在其中对Elasticsearch的Restful的API接口提供了语法提示

1.1.1 安装Elasticsearch

通过下面的Docker命令即可安装单机版本的elasticsearch:

docker run -d \
  --name es \
  -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
  -e "discovery.type=single-node" \
  -v es-data:/usr/share/elasticsearch/data \
  -v es-plugins:/usr/share/elasticsearch/plugins \
  --privileged \
  --network hm-net \
  -p 9200:9200 \
  -p 9300:9300 \
  elasticsearch:7.12.1

注意事项:这里我们采用的是elasticsearch的7.12.1版本,由于8以上版本的JavaAPI变化很大,在企业中应用并不广泛,企业中应用较多的还是8以下的版本。

如果拉取镜像困难,可以直接导入课前资料提供的镜像tar包:

安装完成后,访问9200端口,即可看到响应的Elasticsearch服务的基本信息:

1.1.2 安装Kibana

通过下面的Docker命令,即可部署Kibana:

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=hm-net \
-p 5601:5601  \
kibana:7.12.1

安装完成后,直接访问5601端口,即可看到控制台页面:

选择Explore on my own之后,进入主页面:

然后选中Dev tools,进入开发工具页面:

1.2 倒排索引

elasticsearch之所以有如此高性能的搜索表现,正是得益于底层的倒排索引技术。那么什么是倒排索引呢?

倒排索引的概念是基于MySQL这样的正向索引而言的。

1.2.1 正向索引

我们先来回顾一下正向索引。

例如有一张名为tb_goods的表:

id

title

price

1

小米手机

3499

2

华为手机

4999

3

华为小米充电器

49

4

小米手环

49

...

...

...

其中的id字段已经创建了索引,由于索引底层采用了B+树结构,因此我们根据id搜索的速度会非常快。但是其他没有索引的字段,例如title,只在叶子节点上存在。

因此要根据title搜索的时候只能遍历树中的每一个叶子节点,判断title数据是否符合要求。

比如用户的SQL语句为:

select * from tb_goods where title like '%手机%';

那搜索的大概流程如图:

说明:

  • 1)检查到搜索条件为like '%手机%',需要找到title中包含手机的数据

  • 2)逐条遍历每行数据(每个叶子节点),比如第1次拿到id为1的数据

  • 3)判断数据中的title字段值是否符合条件

  • 4)如果符合则放入结果集,不符合则丢弃

  • 5)回到步骤1

综上,根据id精确匹配时,可以走索引,查询效率较高。而当搜索条件为模糊匹配时,由于索引无法生效,导致从索引查询退化为全表扫描,效率很差。

因此,正向索引适合于根据索引字段的精确搜索,不适合基于部分词条的模糊匹配。

而倒排索引恰好解决的就是根据部分词条模糊匹配的问题。

1.2.2 倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。

  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语。

创建倒排索引是对正向索引的一种特殊处理和应用,流程如下:

  • 将每一个文档的数据利用分词算法根据语义拆分,得到一个个词条

  • 创建表,每行数据包括词条、词条所在文档id、位置等信息

  • 因为词条唯一性,可以给词条创建正向索引

此时形成的这张以词条为索引的表,就是倒排索引表,两者对比如下:

倒排索引的搜索流程如下(以搜索"华为手机"为例),如图:

流程描述:

1)用户输入条件"华为手机"进行搜索。

2)对用户输入条件分词,得到词条:华为手机

3)拿着词条在倒排索引中查找(由于词条有索引,查询效率很高),即可得到包含词条的文档id:1、2、3

4)拿着文档id到正向索引中查找具体文档即可(由于id也有索引,查询效率也很高)。

虽然要先查询倒排索引,再查询正向索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。

1.2.3 正向和倒排

那么为什么一个叫做正向索引,一个叫做倒排索引呢?

  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程

  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到文档的id,然后根据id获取文档。是根据词条找文档的过程

那么两者方式的优缺点是什么呢? 

正向索引

  • 优点:

    • 可以给多个字段创建索引

    • 根据索引字段搜索、排序速度非常快

  • 缺点:

    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。

倒排索引

  • 优点:

    • 根据词条搜索、模糊搜索时,速度非常快

  • 缺点:

    • 只能给词条创建索引,而不是字段

    • 无法根据字段做排序

1.3 基础概念

elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。

1.3.1 文档和字段

Elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。

文档数据会被序列化为json格式后存储在elasticsearch中:

1.3.2 索引和映射

随着业务发展,需要在es中存储的文档也会越来越多,比如有商品的文档、用户的文档、订单文档等等:

所有文档都散乱存放显然非常混乱,也不方便管理。

因此,我们要将类型相同的文档集中在一起管理,称为索引库(Index)。例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引库;

  • 所有商品的文档,可以组织在一起,称为商品的索引库;

  • 所有订单的文档,可以组织在一起,称为订单的索引库;

因此,我们可以把索引库当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

1.3.3 mysql与elasticsearch

我们统一的把mysql与elasticsearch的概念做一下对比:

如图:

那是不是说,我们学习了elasticsearch就不再需要mysql了呢?

并不是如此,两者各自有自己的擅长之处:

  • Mysql:擅长事务类型操作,可以确保数据的安全性和一致性

  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现

  • 对查询性能要求较高的搜索需求,使用elasticsearch实现

  • 两者再基于某种方式,实现数据的同步,保证一致性

1.4 IK分词器

Elasticsearch的关键就是倒排索引,而倒排索引依赖于对文档内容的分词,而分词则需要高效、精准的分词算法,IK分词器就是这样一个中文分词算法。

1.4.1 安装IK分词器

首先,查看之前安装的Elasticsearch容器的plugins数据卷目录:

docker volume inspect es-plugins

结果如下:

[
    {
        "CreatedAt": "2024-11-06T10:06:34+08:00",
        "Driver": "local",
        "Labels": null,
        "Mountpoint": "/var/lib/docker/volumes/es-plugins/_data",
        "Name": "es-plugins",
        "Options": null,
        "Scope": "local"
    }
]

可以看到elasticsearch的插件挂载到了/var/lib/docker/volumes/es-plugins/_data这个目录。我们需要把IK分词器上传至这个目录。

找到课前资料提供的ik分词器插件,课前资料提供了7

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值