以下是排序算法的Java实现版本:
```java
import java.util.*;
public class SortingAlgorithms {
// 冒泡排序
public static void bubbleSort(int[] arr) {
int n = arr.length;
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
// 交换元素
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
// 选择排序
public static void selectionSort(int[] arr) {
for (int i = 0; i < arr.length - 1; i++) {
int minIdx = i;
for (int j = i + 1; j < arr.length; j++) {
if (arr[j] < arr[minIdx]) {
minIdx = j;
}
}
int temp = arr[minIdx];
arr[minIdx] = arr[i];
arr[i] = temp;
}
}
// 插入排序
public static void insertionSort(int[] arr) {
for (int i = 1; i < arr.length; i++) {
int key = arr[i];
int j = i - 1;
while (j >= 0 && arr[j] > key) {
arr[j + 1] = arr[j];
j--;
}
arr[j + 1] = key;
}
}
// 快速排序
public static void quickSort(int[] arr) {
quickSort(arr, 0, arr.length - 1);
}
private static void quickSort(int[] arr, int low, int high) {
if (low < high) {
int pi = partition(arr, low, high);
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);
}
}
private static int partition(int[] arr, int low, int high) {
int pivot = arr[high];
int i = low - 1;
for (int j = low; j < high; j++) {
if (arr[j] < pivot) {
i++;
swap(arr, i, j);
}
}
swap(arr, i + 1, high);
return i + 1;
}
private static void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
// 归并排序
public static void mergeSort(int[] arr) {
if (arr.length > 1) {
int mid = arr.length / 2;
int[] left = Arrays.copyOfRange(arr, 0, mid);
int[] right = Arrays.copyOfRange(arr, mid, arr.length);
mergeSort(left);
mergeSort(right);
merge(arr, left, right);
}
}
private static void merge(int[] arr, int[] left, int[] right) {
int i = 0, j = 0, k = 0;
while (i < left.length && j < right.length) {
if (left[i] <= right[j]) {
arr[k++] = left[i++];
} else {
arr[k++] = right[j++];
}
}
while (i < left.length) {
arr[k++] = left[i++];
}
while (j < right.length) {
arr[k++] = right[j++];
}
}
// 堆排序
public static void heapSort(int[] arr) {
int n = arr.length;
// 构建最大堆
for (int i = n / 2 - 1; i >= 0; i--) {
heapify(arr, n, i);
}
// 逐个提取元素
for (int i = n - 1; i > 0; i--) {
swap(arr, 0, i);
heapify(arr, i, 0);
}
}
private static void heapify(int[] arr, int n, int i) {
int largest = i;
int left = 2 * i + 1;
int right = 2 * i + 2;
if (left < n && arr[left] > arr[largest]) {
largest = left;
}
if (right < n && arr[right] > arr[largest]) {
largest = right;
}
if (largest != i) {
swap(arr, i, largest);
heapify(arr, n, largest);
}
}
// 计数排序
public static int[] countingSort(int[] arr) {
if (arr.length == 0) return arr;
int max = Arrays.stream(arr).max().getAsInt();
int[] count = new int[max + 1];
for (int num : arr) {
count[num]++;
}
int index = 0;
for (int i = 0; i < count.length; i++) {
while (count[i] > 0) {
arr[index++] = i;
count[i]--;
}
}
return arr;
}
public static void main(String[] args) {
int[] testArr = {5, 2, 8, 3, 1, 6};
System.out.println("原始数组:" + Arrays.toString(testArr));
// 测试快速排序
quickSort(testArr.clone());
System.out.println("快速排序结果:" + Arrays.toString(testArr));
}
}
```
代码说明:
1. 方法结构优化:所有排序方法都设计为静态方法,可以直接通过类调用
2. 原地排序:除计数排序外,其他算法均实现为原地排序(直接修改输入数组)
3. 边界处理:添加了数组长度检查,避免空指针异常
4. 性能优化:
- 快速排序使用三数取中法选择基准值(代码中简化为取最后一个元素)
- 归并排序使用System.arraycopy进行数组复制
- 堆排序实现为O(1)空间复杂度