在数据中心及云场景下,摩尔定律失效,通用处理单元 CPU 算力增长速率放缓,而网络 IO 类速率及性能不断攀升,二者增长速率差异形成剪刀差,即当前通用处理器的处理能力无法跟上网络、磁盘等 IO 处理的需求。传统数据中心下越来越多的通用 CPU 算力被 IO 及管理面等处理占用,这部分资源损耗称之为数据中心税(Datacenter Tax)。据 AWS 和 Google Cloud 统计,数据中心税可能占据数据中心算力的 30% 以上,部分场景下甚至可能更多[1][2]。
DPU (Data Processing Unit) 的出现就是为了将这部分算力资源从主机 CPU上解放出来,通过将管理面、网络、存储、安全等能力卸载到专有的处理器芯片上进行处理加速,达成降本增效的结果。目前主流云厂商如 AWS 、阿里云、华为云都通过自研芯片完成管理面及相关数据面的卸载,实现数据中心计算资源 100% 售卖给客户。
DPU 发展非常火热。云厂商及大数据在相关场景下对 DPU 存在较强烈的需求,国内也有很多 DPU 初创公司推出不同的 DPU 产品。在这一背景下,云和大数据等厂商需要考虑如何整合使用不同 DPU 产品,而 DPU 厂商也面临对不同客户交付时设备驱动适配客户指定操作系统的问题。
openEuler 作为国内领先的开源开放操作系统,通过基于 openEuler 构建的 DPU-OS ,解决 DPU 厂商及客户之间的适配问题。除此之外, DPU 上 OS 用于承载部分业务加速的需求,需要对 DPU-OS 进行性能优化加速,可以基于 openEuler 构建 DPU 相关加速能力,内置在 DPU-OS 中,构建 DPU 相关软件生态。
DPU现状
DPU 普遍具有以下特点及问题:
(1)DPU 通用处理能力资源受限