使用 Python 进行数据可视化之Plotly,互联网大厂100道Python面试题助你冲关金三银四

本文介绍了一位技术专家分享的Python学习资源,包括全套学习资料、交互式图表库如Plotly的使用方法,以及从基础到深度学习的路径。文章强调了系统化学习的重要性,提醒读者避免知识碎片化,以便有效提升技能并解决技术瓶颈。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
img

正文

添加交互


就像 Bokeh 一样,plotly 也提供了各种交互。让我们讨论其中的几个。

创建下拉菜单:下拉菜单是菜单按钮的一部分,始终显示在屏幕上。每个菜单按钮都与一个菜单小部件相关联,该小部件可以在单击该菜单按钮时显示该菜单按钮的选项。在 plotly 中,有 4 种可能的方法可以使用 updatemenu 方法来修改图表。

  • restyle: 修改数据或数据属性

  • relayout: 修改布局属性

  • update: 修改数据和布局属性

  • animate: 开始或暂停动画

例子:

import plotly.graph_objects as px

import pandas as pd

读取数据库

data = pd.read_csv(“tips.csv”)

plot = px.Figure(data=[px.Scatter(

x=data[‘day’],

y=data[‘tip’],

mode=‘markers’,)

])

添加下拉菜单

plot.update_layout(

updatemenus=[

dict(

buttons=list([

dict(

args=[“type”, “scatter”],

label=“Scatter Plot”,

method=“restyle”

),

dict(

args=[“type”, “bar”],

label=“Bar Chart”,

method=“restyle”

)

]),

direction=“down”,

),

]

)

plot.show()

输出:

dropdownplotly.gif

添加按钮: 在 plotly 中,动作自定义按钮用于直接从记录中快速制作动作。自定义按钮可以添加到 CRM、营销和自定义应用程序中的页面布局。还有 4 种可能的方法可以应用于自定义按钮:

  • restyle: 修改数据或数据属性

  • relayout: 修改布局属性

  • update: 修改数据和布局属性

  • animate: 开始或暂停动画

例子:

import plotly.graph_objects as px

import pandas as pd

读取数据库

data = pd.read_csv(“tips.csv”)

plot = px.Figure(data=[px.Scatter(

x=data[‘day’],

y=data[‘tip’],

mode=‘markers’,)

])

添加下拉菜单

plot.update_layout(

updatemenus=[

dict(

type=“buttons”,

direction=“left”,

buttons=list([

dict(

args=[“type”, “scatter”],

label=“Scatter Plot”,

method=“restyle”

),

dict(

args=[“type”, “bar”],

label=“Bar Chart”,

method=“restyle”

)

]),

),

]

)

plot.show()

输出:

buttonplotly.gif

创建滑块和选择器:

在 plotly 中,范围滑块是一个自定义范围类型的输入控件。它允许在指定的最小和最大范围之间选择一个值或一个值范围。范围选择器是一种用于选择要在图表中显示的范围的工具。它提供了用于在图表中选择预配置范围的按钮。它还提供了输入框,可以手动输入最小和最大日期

例子:

import plotly.graph_objects as px

import pandas as pd

读取数据库

data = pd.read_csv(“tips.csv”)

plot = px.Figure(data=[px.Scatter(

y=data[‘tip’],

mode=‘lines’,)

])

plot.update_layout(

xaxis=dict(

rangeselector=dict(

buttons=list([

dict(count=1,

step=“day”,

stepmode=“backward”),

])

),

rangeslider=dict(

visible=True

),

)

)

plot.show()

输出:

sliderplotly.gif

小结


在本系列教程中,我们借助 Python 的四个不同绘图模块(即 MatplotlibSeabornBokeh 和 Plotly)绘制了tips 数据集。每个模块都以自己独特的方式显示情节,每个模块都有自己的一组功能,例如 Matplotlib 提供了更大的灵活性,但代价是编写更多代码,而 Seaborn 作为一种高级语言提供了允许人们通过少量代码。每个模块都可以根据我们想要完成的任务使用。

🥇 Python 进行数据可视化系列汇总

🧵 更多相关文章


🍰 往日优秀文章推荐:

如果你真的从这篇文章中学到了一些新东西,喜欢它,收藏它并与你的小伙伴分享。🤗最后,不要忘了❤或📑支持一下哦

🥇 评论区抽粉丝送书啦


💌 欢迎大家在评论区提出意见和建议! (抽两位幸运儿送书,实物图如下)💌

在这里插入图片描述

《Python入门到人工智能实战》

【内容简介】

**《Python 入门到人工智能实战》是针对零基础编程学习者编写的教程。从初学者角度出发,每章以问题为导向,辅以大量的实例,详细地介绍了Python 基础、机器学习,以及最好也最易学习的两个平台PyTorch 和Keras。

全书共20 章,包括Python 安装配置、Python 语言基础、流程控制语句、序列、函数、对象、文件及异常处理、数据处理和分析的重要模块(NumPy、Pandas)、机器学习基础、机器学习常用调优方法、神经网络、卷积神经网络,以及使用PyTorch、Keras 实现多个人工智能实战案例等。书中所有知识都结合具体实例进行讲解,涉及的程序代码给出了详细的注释,使读者可以轻松领会。**

也有不想靠抽,想自己买的同学可以参考下面的链接

京东自营购买链接:

《Python入门到人工智能实战》- 京东图书

如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费学习大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、全套PDF电子书

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

四、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
[外链图片转存中…(img-LpwlyXj5-1713461518638)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值