先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
正文
就像 Bokeh 一样,plotly 也提供了各种交互。让我们讨论其中的几个。
创建下拉菜单:下拉菜单是菜单按钮的一部分,始终显示在屏幕上。每个菜单按钮都与一个菜单小部件相关联,该小部件可以在单击该菜单按钮时显示该菜单按钮的选项。在 plotly 中,有 4 种可能的方法可以使用 updatemenu 方法来修改图表。
-
restyle: 修改数据或数据属性
-
relayout: 修改布局属性
-
update: 修改数据和布局属性
-
animate: 开始或暂停动画
例子:
import plotly.graph_objects as px
import pandas as pd
读取数据库
data = pd.read_csv(“tips.csv”)
plot = px.Figure(data=[px.Scatter(
x=data[‘day’],
y=data[‘tip’],
mode=‘markers’,)
])
添加下拉菜单
plot.update_layout(
updatemenus=[
dict(
buttons=list([
dict(
args=[“type”, “scatter”],
label=“Scatter Plot”,
method=“restyle”
),
dict(
args=[“type”, “bar”],
label=“Bar Chart”,
method=“restyle”
)
]),
direction=“down”,
),
]
)
plot.show()
输出:
添加按钮: 在 plotly 中,动作自定义按钮用于直接从记录中快速制作动作。自定义按钮可以添加到 CRM、营销和自定义应用程序中的页面布局。还有 4 种可能的方法可以应用于自定义按钮:
-
restyle: 修改数据或数据属性
-
relayout: 修改布局属性
-
update: 修改数据和布局属性
-
animate: 开始或暂停动画
例子:
import plotly.graph_objects as px
import pandas as pd
读取数据库
data = pd.read_csv(“tips.csv”)
plot = px.Figure(data=[px.Scatter(
x=data[‘day’],
y=data[‘tip’],
mode=‘markers’,)
])
添加下拉菜单
plot.update_layout(
updatemenus=[
dict(
type=“buttons”,
direction=“left”,
buttons=list([
dict(
args=[“type”, “scatter”],
label=“Scatter Plot”,
method=“restyle”
),
dict(
args=[“type”, “bar”],
label=“Bar Chart”,
method=“restyle”
)
]),
),
]
)
plot.show()
输出:
创建滑块和选择器:
在 plotly 中,范围滑块是一个自定义范围类型的输入控件。它允许在指定的最小和最大范围之间选择一个值或一个值范围。范围选择器是一种用于选择要在图表中显示的范围的工具。它提供了用于在图表中选择预配置范围的按钮。它还提供了输入框,可以手动输入最小和最大日期
例子:
import plotly.graph_objects as px
import pandas as pd
读取数据库
data = pd.read_csv(“tips.csv”)
plot = px.Figure(data=[px.Scatter(
y=data[‘tip’],
mode=‘lines’,)
])
plot.update_layout(
xaxis=dict(
rangeselector=dict(
buttons=list([
dict(count=1,
step=“day”,
stepmode=“backward”),
])
),
rangeslider=dict(
visible=True
),
)
)
plot.show()
输出:
在本系列教程中,我们借助 Python 的四个不同绘图模块(即 Matplotlib、Seaborn、Bokeh 和 Plotly)绘制了tips 数据集。每个模块都以自己独特的方式显示情节,每个模块都有自己的一组功能,例如 Matplotlib 提供了更大的灵活性,但代价是编写更多代码,而 Seaborn 作为一种高级语言提供了允许人们通过少量代码。每个模块都可以根据我们想要完成的任务使用。
🥇 Python 进行数据可视化系列汇总
🧵 更多相关文章
🍰 往日优秀文章推荐:
如果你真的从这篇文章中学到了一些新东西,喜欢它,收藏它并与你的小伙伴分享。🤗最后,不要忘了❤或📑支持一下哦
💌 欢迎大家在评论区提出意见和建议! (抽两位幸运儿送书,实物图如下)💌
《Python入门到人工智能实战》
【内容简介】
**《Python 入门到人工智能实战》是针对零基础编程学习者编写的教程。从初学者角度出发,每章以问题为导向,辅以大量的实例,详细地介绍了Python 基础、机器学习,以及最好也最易学习的两个平台PyTorch 和Keras。
全书共20 章,包括Python 安装配置、Python 语言基础、流程控制语句、序列、函数、对象、文件及异常处理、数据处理和分析的重要模块(NumPy、Pandas)、机器学习基础、机器学习常用调优方法、神经网络、卷积神经网络,以及使用PyTorch、Keras 实现多个人工智能实战案例等。书中所有知识都结合具体实例进行讲解,涉及的程序代码给出了详细的注释,使读者可以轻松领会。**
也有不想靠抽,想自己买的同学可以参考下面的链接
京东自营购买链接:
如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费学习大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
五、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
[外链图片转存中…(img-LpwlyXj5-1713461518638)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!