快速排序是一种基于分治策略的排序算法,运行高效,应用广泛。
快速排序的核心就是“哨兵划分”,其目的是:选择数组中的某个元素作为“基准数”,其左边均为小于基准数的数,其右边均为大于基准数的数。
哨兵划分完成后,原数组被划分成三部分:左子数组、基准数、右子数组,且满足“左子数组任意元素 ≤ 基准数 ≤ 右子数组任意元素”。因此,我们接下来只需对这两个子数组进行排序。之后进行了两次复杂度优化,一次是对基准数的选取,优化时间复杂度,一次是对递归数组的选取,优化空间复杂度。
目录
一.算法流程
快速排序的整体流程如下
- 首先,对原数组执行一次“哨兵划分”,得到未排序的左子数组和右子数组。
- 然后,对左子数组和右子数组分别递归执行“哨兵划分”。
- 持续递归,直至子数组长度为 1 时终止,从而完成整个数组的排序。
public class demo{
public static void main(String[] args) {
int[] nums={7,3,2,6,9,8,5};
quickSort(nums,0,nums.length-1);
for (int i = 0; i < nums.length; i++) {
System.out.print(nums[i]+" ");
}
}
/* 快速排序 */
static void quickSort(int[] nums, int left, int right) {
// 子数组长度为 1 时终止递归
if (left >= right)
return;
// 哨兵划分
int pivot = partition(nums, left, right);
// 递归左子数组、右子数组
quickSort(nums, left, pivot - 1);
quickSort(nums, pivot + 1, right);
}
/* 元素交换 */
static void swap(int[] nums, int i, int j) {
int tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}
/* 哨兵划分 */
static int partition(int[] nums, int left, int right) {
// 以 nums[left] 为基准数
int i = left, j = right;
while (i < j) {
while (i < j && nums[j] >= nums[left])
j--; // 从右向左找首个小于基准数的元素
while (i < j && nums[i] <= nums[left])
i++; // 从左向右找首个大于基准数的元素
swap(nums, i, j); // 交换这两个元素
}
swap(nums, i, left); // 将基准数交换至两子数组的分界线
return i; // 返回基准数的索引
}
}
在这代码里边有一点需要注意
while (i < j && nums[j] >= nums[left])
j--; // 从右向左找首个小于基准数的元素
while (i < j && nums[i] <= nums[left])
i++; // 从左向右找首个大于基准数的元素
先从右往左找比基准数小的数,再从左往右找比基准数大的数,为什么呢?
举个例子:
这里有一个数组{7,3,2,6,9,8,5};
如果先左往右找大值,最终左指针指向9
然后从右往左找小值,最终右指针指向5
两者交换位置{7,3,2,6,5,8,9};
然后继续循环,此时左指针指向8,然后右指针指向8
最后基准数与8交换位置,最终数组变为{8,3,2,6,5,7,9};
此时7左边的数字并不全大于基准数7,出现错误,违背初衷
所以说应该先让右指针找最小值,最后左指针只能顺着右指针,二者重合的时候必定是满足比基准数小的心意的,此时才能将小值放在基准数左边,大值放在基准数右边
二.算法特性
- 时间复杂度为 O(nlogn)、非自适应排序:在平均情况下,哨兵划分的递归层数为 logn ,每层中的总循环数为 n ,总体使用 O(nlogn) 时间。在最差情况下,每轮哨兵划分操作都将长度为 n 的数组划分为长度为 0 和 n−1 的两个子数组,此时递归层数达到 n ,每层中的循环数为 n ,总体使用 O(n2) 时间。
- 空间复杂度为 O(n)、原地排序:在输入数组完全倒序的情况下,达到最差递归深度 n ,使用 O(n) 栈帧空间。排序操作是在原数组上进行的,未借助额外数组。
- 非稳定排序:在哨兵划分的最后一步,基准数可能会被交换至相等元素的右侧。
三.快速排序为什么快
从名称上就能看出,快速排序在效率方面应该具有一定的优势。尽管快速排序的平均时间复杂度与“归并排序”和“堆排序”相同,但通常快速排序的效率更高,主要有以下原因。
- 出现最差情况的概率很低:虽然快速排序的最差时间复杂度为 O(n2) ,没有归并排序稳定,但在绝大多数情况下,快速排序能在 O(nlogn) 的时间复杂度下运行。
- 缓存使用效率高:在执行哨兵划分操作时,系统可将整个子数组加载到缓存,因此访问元素的效率较高。而像“堆排序”这类算法需要跳跃式访问元素,从而缺乏这一特性。
- 复杂度的常数系数小:在上述三种算法中,快速排序的比较、赋值、交换等操作的总数量最少。这与“插入排序”比“冒泡排序”更快的原因类似。
四.基准数优化
快速排序在某些输入下的时间效率可能降低。举一个极端例子,假设输入数组是完全倒序的,由于我们选择最左端元素作为基准数,那么在哨兵划分完成后,基准数被交换至数组最右端,导致左子数组长度为 n−1、右子数组长度为 0 。如此递归下去,每轮哨兵划分后都有一个子数组的长度为 0 ,分治策略失效,快速排序退化为“冒泡排序”的近似形式。
为了尽量避免这种情况发生,我们可以优化哨兵划分中的基准数的选取策略。例如,我们可以随机选取一个元素作为基准数。然而,如果运气不佳,每次都选到不理想的基准数,效率仍然不尽如人意。
需要注意的是,编程语言通常生成的是“伪随机数”。如果我们针对伪随机数序列构建一个特定的测试样例,那么快速排序的效率仍然可能劣化。
为了进一步改进,我们可以在数组中选取三个候选元素(通常为数组的首、尾、中点元素),并将这三个候选元素的中位数作为基准数。得到真正的left基准数,防止因为基准数,选择不恰当导致时间复杂度变高
/* 选取三个候选元素的中位数 */
int medianThree(int[] nums, int left, int mid, int right) {
int l = nums[left], m = nums[mid], r = nums[right];
if ((l <= m && m <= r) || (r <= m && m <= l))
return mid; // m 在 l 和 r 之间
if ((m <= l && l <= r) || (r <= l && l <= m))
return left; // l 在 m 和 r 之间
return right;
}
/* 哨兵划分(三数取中值) */
int partition(int[] nums, int left, int right) {
// 选取三个候选元素的中位数
int med = medianThree(nums, left, (left + right) / 2, right);
// 将中位数交换至数组最左端
swap(nums, left, med);
// 以 nums[left] 为基准数
int i = left, j = right;
while (i < j) {
while (i < j && nums[j] >= nums[left])
j--; // 从右向左找首个小于基准数的元素
while (i < j && nums[i] <= nums[left])
i++; // 从左向右找首个大于基准数的元素
swap(nums, i, j); // 交换这两个元素
}
swap(nums, i, left); // 将基准数交换至两子数组的分界线
return i; // 返回基准数的索引
}
五.尾递归优化
在某些输入下,快速排序可能占用空间较多。以完全有序的输入数组为例,设递归中的子数组长度为 m ,每轮哨兵划分操作都将产生长度为 0 的左子数组和长度为 m−1 的右子数组,这意味着每一层递归调用减少的问题规模非常小(只减少一个元素),递归树的高度会达到 n−1 ,此时需要占用 O(n) 大小的栈帧空间。
为了防止栈帧空间的累积,我们可以在每轮哨兵排序完成后,比较两个子数组的长度,仅对较短的子数组进行递归,较长的子数组放在下一次快速排序中,这样可以减少递归深度,减少空间复杂度。由于较短子数组的长度不会超过 n/2 ,因此这种方法能确保递归深度不超过 logn ,从而将最差空间复杂度优化至 O(logn) 。代码如下所示:
/* 快速排序(尾递归优化) */
void quickSort(int[] nums, int left, int right) {
// 子数组长度为 1 时终止
while (left < right) {
// 哨兵划分操作
int pivot = partition(nums, left, right);
// 对两个子数组中较短的那个执行快速排序
if (pivot - left < right - pivot) {
quickSort(nums, left, pivot - 1); // 递归排序左子数组
left = pivot + 1; // 剩余未排序区间为 [pivot + 1, right]
} else {
quickSort(nums, pivot + 1, right); // 递归排序右子数组
right = pivot - 1; // 剩余未排序区间为 [left, pivot - 1]
}
}
}