2. Hadoop 序列化
2.1 序列化概述
1)什么是序列化
序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储到磁盘(持久化)和网络传输。
反序列化就是将收到字节序列(或其他数据传输协议或者是磁盘的持久化数据,转换成内存中的对象。
2)为什么要序列化
一般来说,“活的”对象只生存在内存里,关机断电就没有了。而且“活的”对象只能由本地的进程使用,不能被发送到网络上的另外一台计算机。 然而序列化可以存储“活的”对象,可以将“活的”对象发送到远程计算机。
3)为什么不用 Java 的序列化
Java 的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,Header,继承体系等),不便于在网络中高效传输。所以,
Hadoop 自己开发了一套序列化机制(Writable)。
4)Hadoop 序列化特点:
(1)紧凑 :高效使用存储空间。
(2)快速:读写数据的额外开销小。
(3)互操作:支持多语言的交互
2.2 自定义 bean 对象实现序列化接口(Writable)
在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在 Hadoop 框架内部传递一个 bean 对象,那么该对象就需要实现序列化接口。
具体实现 bean 对象序列化步骤如下 7 步。
(1)必须实现 Writable 接口
(2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造
public FlowBean() {
super();
}
(3)重写序列化方法
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
}
(4)重写反序列化方法
@Override
public void readFields(DataInput in) throws IOException {
upFlow = in.readLong();
downFlow = in.readLong();
sumFlow = in.readLong();
}
(5)注意反序列化的顺序和序列化的顺序完全一致
(6)要想把结果显示在文件中,需要重写 toString(),可用"\t"分开,方便后续用。
(7)如果需要将自定义的 bean 放在 key 中传输,则还需要实现 Comparable 接口,因为MapReduce 框中的 Shuffle 过程要求对 key 必须能排序。
@Override
public int compareTo(FlowBean o) {
// 倒序排列,从大到小
return this.sumFlow > o.getSumFlow() ? -1 : 1;
}
2.3 序列化案例实操
1)需求
统计每一个手机号耗费的总上行流量、总下行流量、总流量
(1)输入数据
phone_data .txt
2)需求分析
3)编写 MapReduce 程序
(1)编写流量统计的 Bean 对象
package com.atguigu.mapreduce.writable;
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
//1 继承 Writable 接口
public class FlowBean implements Writable {
private long upFlow; //上行流量
private long downFlow; //下行流量
private long sumFlow; //总流量
//2 提供无参构造
public FlowBean() {
}
//3 提供三个参数的 getter 和 setter 方法
public long getUpFlow() {
return upFlow;
}
public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
}
public long getDownFlow() {
return downFlow;
}
public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
}
public long getSumFlow() {
return sumFlow;
}
public void setSumFlow(long sumFlow) {
this.sumFlow = sumFlow;
}
public void setSumFlow() {
this.sumFlow = this.upFlow + this.downFlow;
}
//4 实现序列化和反序列化方法,注意顺序一定要保持一致
@Override
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeLong(upFlow);
dataOutput.writeLong(downFlow);
dataOutput.writeLong(sumFlow);
}
@Override
public void readFields(DataInput dataInput) throws IOException {
this.upFlow = dataInput.readLong();
this.downFlow = dataInput.readLong();
this.sumFlow = dataInput.readLong();
}
//5 重写 ToString
@Override
public String toString() {
return upFlow + "\t" + downFlow + "\t" + sumFlow;
}
}
(2)编写 Mapper 类
package com.atguigu.mapreduce.writable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean>
{
private Text outK = new Text();
private FlowBean outV = new FlowBean();
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
//1 获取一行数据,转成字符串
String line = value.toString();
//2 切割数据
String[] split = line.split("\t");
//3 抓取我们需要的数据:手机号,上行流量,下行流量
String phone = split[1];
String up = split[split.length - 3];
String down = split[split.length - 2];
//4 封装 outK outV
outK.set(phone);
outV.setUpFlow(Long.parseLong(up));
outV.setDownFlow(Long.parseLong(down));
outV.setSumFlow();
//5 写出 outK outV
context.write(outK, outV);
}
}
(3)编写 Reducer 类
package com.atguigu.mapreduce.writable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class FlowReducer extends Reducer<Text, FlowBean, Text, FlowBean>
{
private FlowBean outV = new FlowBean();
@Override
protected void reduce(Text key, Iterable<FlowBean> values, Context
context) throws IOException, InterruptedException {
long totalUp = 0;
long totalDown = 0;
//1 遍历 values,将其中的上行流量,下行流量分别累加
for (FlowBean flowBean : values) {
totalUp += flowBean.getUpFlow();
totalDown += flowBean.getDownFlow();
}
//2 封装 outKV
outV.setUpFlow(totalUp);
outV.setDownFlow(totalDown);
outV.setSumFlow();
//3 写出 outK outV
context.write(key,outV);
}
}
(4)编写 Driver 驱动类
package com.atguigu.mapreduce.writable;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class FlowDriver {
public
static
void
main(String[]
args)
throws
IOException,
ClassNotFoundException, InterruptedException {
//1 获取 job 对象
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
//2 关联本 Driver 类
job.setJarByClass(FlowDriver.class);
//3 关联 Mapper 和 Reducer
job.setMapperClass(FlowMapper.class);
job.setReducerClass(FlowReducer.class);
//4 设置 Map 端输出 KV 类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);
//5 设置程序最终输出的 KV 类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
//6 设置程序的输入输出路径
FileInputFormat.setInputPaths(job, new Path("D:\\inputflow"));
FileOutputFormat.setOutputPath(job, new Path("D:\\flowoutput"));
//7 提交 Job
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}
3. MapReduce 框架原理
3.1 InputFormat 数据输入
3.1.1 切片与 MapTask 并行度决定机制
1)问题引出
MapTask 的并行度决定 Map 阶段的任务处理并发度,进而影响到整个 Job 的处理速度。
思考:1G 的数据,启动 8 个 MapTask,可以提高集群的并发处理能力。那么 1K 的数据,也启动 8 个 MapTask,会提高集群性能吗?MapTask 并行任务是否越多越好呢?哪些因素影响了 MapTask 并行度?
2)MapTask 并行度决定机制
数据块:Block 是 HDFS 物理上把数据分成一块一块。数据块是 HDFS 存储数据单位。
数据切片:数据切片只是在逻辑上对输入进行分片,并不会在磁盘上将其切分成片进行
存储。数据切片是 MapReduce 程序计算输入数据的单位,一个切片会对应启动一个 MapTask。
3.1.2 Job 提交流程源码和切片源码详解
1)Job 提交流程源码详解
waitForCompletion()
submit();
// 1 建立连接
connect();
// 1)创建提交 Job 的代理
new Cluster(getConfiguration());
// (1)判断是本地运行环境还是 yarn 集群运行环境
initialize(jobTrackAddr, conf);
// 2 提交 job
submitter.submitJobInternal(Job.this, cluster)
// 1)创建给集群提交数据的 Stag 路径
Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf);
// 2)获取 jobid ,并创建 Job 路径
JobID jobId = submitClient.getNewJobID();
// 3)拷贝 jar 包到集群
copyAndConfigureFiles(job, submitJobDir);
rUploader.uploadFiles(job, jobSubmitDir);
// 4)计算切片,生成切片规划文件
writeSplits(job, submitJobDir);
maps = writeNewSplits(job, jobSubmitDir);
input.getSplits(job);
// 5)向 Stag 路径写 XML 配置文件
writeConf(conf, submitJobFile);
conf.writeXml(out);
// 6)提交 Job,返回提交状态
status
=
submitClient.submitJob(jobId,
submitJobDir.toString(),
2)FileInputFormat 切片源码解析(input.getSplits(job))
(1)程序先找到你数据存储的目录。
(2)开始遍历处理(规划切片)目录下的每一个文件
(3)遍历第一个文件ss.txt
a)获取文件大小fs.sizeOf(ss.txt)
b)计算切片大小
computeSplitSize(Math.max(minSize,Math.min(maxSize,blocksize)))=blocksize=128M
c)默认情况下,切片大小=blocksize
d)开始切,形成第1个切片:ss.txt—0:128M 第2个切片ss.txt—128:256M 第3个切片ss.txt—256M:300M
(每次切片时,都要判断切完剩下的部分是否大于块的1.1倍,不大于1.1倍就划分一块切片)
e)将切片信息写到一个切片规划文件中
f)整个切片的核心过程在getSplit()方法中完成
g)InputSplit只记录了切片的元数据信息,比如起始位置、长度以及所在的节点列表等。
(4)提交切片规划文件到YARN上,YARN上的MrAppMaster就可以根据切片规划文件计算开启MapTask个数。
3.1.3 FileInputFormat 切片机制
(1)简单地按照文件的内容长度进行切片
(2)切片大小,默认等于Block大小
(3)切片时不考虑数据集整体,而是逐个针对每一个文件单独切片
2、案例分析
FileInputFormat切片大小的参数配置
(1)源码中计算切片大小的公式
Math.max(minSize, Math.min(maxSize, blockSize));
mapreduce.input.fileinputformat.split.minsize=1 默认值为1
mapreduce.input.fileinputformat.split.maxsize= Long.MAXValue 默认值Long.MAXValue
因此,默认情况下,切片大小=blocksize。
(2)切片大小设置
maxsize(切片最大值):参数如果调得比blockSize小,则会让切片变小,而且就等于配置的这个参数的值。
minsize(切片最小值):参数调的比blockSize大,则可以让切片变得比blockSize还大。
(3)获取切片信息API
// 获取切片的文件名称
String name = inputSplit.getPath().getName();
// 根据文件类型获取切片信息
FileSplit inputSplit = (FileSplit) context.getInputSplit();
3.1.4 TextInputFormat
1)FileInputFormat 实现类
思考:在运行 MapReduce 程序时,输入的文件格式包括:基于行的日志文件、二进制格式文件、数据库表等。那么,针对不同的数据类型,MapReduce 是如何读取这些数据的呢?
FileInputFormat 常见的接口实现类包括:TextInputFormat、KeyValueTextInputFormat、
NLineInputFormat、CombineTextInputFormat 和自定义 InputFormat 等。
2)TextInputFormat
TextInputFormat 是默认的 FileInputFormat 实现类。按行读取每条记录。键是存储该行在整个文件中的起始字节偏移量, LongWritable 类型。值是这行的内容,不包括任何行终止符(换行符和回车符),Text 类型。
以下是一个示例,比如,一个分片包含了如下 4 条文本记录。
Rich learning form
Intelligent learning engine
Learning more convenient
From the real demand for more close to the enterprise
每条记录表示为以下键/值对:
(0,Rich learning form)
(20,Intelligent learning engine)
(49,Learning more convenient)
(74,From the real demand for more close to the enterprise)
3.1.5 CombineTextInputFormat 切片机制
框架默认的 TextInputFormat 切片机制是对任务按文件规划切片,不管文件多小,都会是一个单独的切片,都会交给一个 MapTask,这样如果有大量小文件,就会产生大量MapTask,处理效率极其低下。
1)应用场景:
CombineTextInputFormat 用于小文件过多的场景,它可以将多个小文件从逻辑上规划到一个切片中,这样,多个小文件就可以交给一个 MapTask 处理。
2)虚拟存储切片最大值设置
CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);// 4m
注意:虚拟存储切片最大值设置最好根据实际的小文件大小情况来设置具体的值。
3)切片机制
生成切片过程包括:虚拟存储过程和切片过程二部分。
(1)虚拟存储过程:
将输入目录下所有文件大小,依次和设置setMaxInputSplitSize 值比较,如果不大于设置的最大值,逻辑上划分一个块。如果输入文件大于设置的最大值且大于两倍,那么以最大值切割一块;当剩余数据大小超过设置的最大值且不大于最大值 2 倍,此时将文件均分成 2 个虚拟存储块(防止出现太小切片)。
例如 setMaxInputSplitSize 值为 4M,输入文件大小为 8.02M,则先逻辑上分成一个4M。剩余的大小为 4.02M,如果按照 4M 逻辑划分,就会出现 0.02M 的小的虚拟存储文件,所以将剩余的 4.02M 文件切分成(2.01M 和 2.01M)两个文件。
(2)切片过程:
(a)判断虚拟存储的文件大小是否大于 setMaxInputSplitSize 值,大于等于则单独形成一个切片。
(b)如果不大于则跟下一个虚拟存储文件进行合并,共同形成一个切片。
(c)测试举例:有 4 个小文件大小分别为 1.7M、5.1M、3.4M 以及 6.8M 这四个小文件,则虚拟存储之后形成 6 个文件块,大小分别为:
1.7M,(2.55M、2.55M),3.4M 以及(3.4M、3.4M)
最终会形成 3 个切片,大小分别为:
(1.7+2.55)M,(2.55+3.4)M,(3.4+3.4)M
3.1.6 CombineTextInputFormat 案例实操
1)需求
将输入的大量小文件合并成一个切片统一处理。
(1)输入数据
准备 4 个小文件
a.txt
b.txt
c.txt
d.txt
(2)期望
期望一个切片处理 4 个文件
2)实现过程
(1)不做任何处理,运行 1.8 节的 WordCount 案例程序,观察切片个数为 4。
number of splits:4
(2)在 WordcountDriver 中增加如下代码,运行程序,并观察运行的切片个数为 3。
(a)驱动类中添加代码如下:
// 如果不设置 InputFormat,它默认用的是 TextInputFormat.class
job.setInputFormatClass(CombineTextInputFormat.class);
//虚拟存储切片最大值设置 4m
CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);
(b)运行如果为 3 个切片。
number of splits:3
(3)在 WordcountDriver 中增加如下代码,运行程序,并观察运行的切片个数为 1。
(a)驱动中添加代码如下:
// 如果不设置 InputFormat,它默认用的是 TextInputFormat.class
job.setInputFormatClass(CombineTextInputFormat.class);
//虚拟存储切片最大值设置 20m
CombineTextInputFormat.setMaxInputSplitSize(job, 20971520);
(b)运行如果为 1 个切片
number of splits:1
3.2 MapReduce 工作流程
上面的流程是整个 MapReduce 最全工作流程,但是 Shuffle 过程只是从第 7 步开始到第16 步结束,具体 Shuffle 过程详解,如下:
(1)MapTask 收集我们的 map()方法输出的 kv 对,放到内存缓冲区中
(2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件
(3)多个溢出文件会被合并成大的溢出文件
(4)在溢出过程及合并的过程中,都要调用 Partitioner 进行分区和针对 key 进行排序
(5)ReduceTask 根据自己的分区号,去各个 MapTask 机器上取相应的结果分区数据
(6)ReduceTask 会抓取到同一个分区的来自不同 MapTask 的结果文件,ReduceTask 会将这些文件再进行合并(归并排序)
(7)合并成大文件后,Shuffle 的过程也就结束了,后面进入 ReduceTask 的逻辑运算过
程(从文件中取出一个一个的键值对 Group,调用用户自定义的 reduce()方法)
注意:
(1)Shuffle 中的缓冲区大小会影响到 MapReduce 程序的执行效率,原则上说,缓冲区越大,磁盘 io 的次数越少,执行速度就越快。
(2)缓冲区的大小可以通过参数调整,参数:mapreduce.task.io.sort.mb 默认 100M。