【MySQL】第十七弹---深入理解数据库并发控制:读-写场景与MVCC机制,以及RR与RC的区别

 ✨个人主页: 熬夜学编程的小林

💗系列专栏: 【C语言详解】 【数据结构详解】【C++详解】【Linux系统编程】【MySQL】

目录

1、数据库并发的三种场景

2、读-写

2.1、3个记录隐藏列字段

2.2、undo 日志

2.3、模拟 MVCC

2.4、Read View

2.5、整体流程

3、RR 与 RC的本质区别

3.1、当前读和快照读在RR级别下的区别

3.2、RR 与 RC的本质区别


1、数据库并发的三种场景

  • 读-读不存在任何问题,也不需要并发控制
  • 读-写 :有线程安全问题,可能会造成事务隔离性问题,可能遇到脏读,幻读,不可重复读
  • 写-写 :有线程安全问题,可能会存在更新丢失问题,比如第一类更新丢失,第二类更新丢失(后面补充)

2、读-写

多版本并发控制( MVCC )是一种用来解决 读-写冲突 的无锁并发控制
为事务分配单向增长的事务ID,为每个修改保存一个版本,版本与事务ID关联,读操作只读该事务开始前的数据库的快照。 所以 MVCC 可以为数据库解决以下问题

  • 在并发读写数据库时,可以做到在读操作时不用阻塞写操作,写操作也不用阻塞读操作提高了数据库并发读写的性能
  • 同时还可以解决脏读,幻读,不可重复读等事务隔离问题,但不能解决更新丢失问题

理解 MVCC 需要知道三个前提知识:

  • 3个记录隐藏字段
  • undo 日志
  • Read View

2.1、3个记录隐藏列字段

  • DB_TRX_ID :6 byte,最近修改( 修改/插入 )事务ID记录创建这条记录/最后一次修改该记录的事务ID
  • DB_ROLL_PTR : 7 byte,回滚指针,指向这条记录的上一个版本(简单理解成,指向历史版本就行,这些数据一般在 undo log 中)
  • DB_ROW_ID : 6 byte,隐含的自增ID(隐藏主键)如果数据表没有主键, InnoDB 会自动以DB_ROW_ID 产生一个聚簇索引
  • 补充:实际还有一个删除flag隐藏字段, 既记录被更新或删除并不代表真的删除,而是删除flag变了

假设测试表结构是: 

-- 创建表
create table if not exists student(
    name varchar(11) not null,
    age int not null
);

-- 插入数据
insert into student values('张三',28);

-- 查看表数据
select * from student;
+--------+-----+
| name   | age |
+--------+-----+
| 张三   |  28 |
+--------+-----+

上面描述的意思是:

nameageDB_TRX_ID(创建该记录的事务ID)DB_ROW_ID(隐式主键)DB_ROLL_PTR(回滚指针)
张三28null1null

我们目前并不知道创建该记录的事务ID,隐式主键,我们就默认设置成null,1。第一条记录也没有其他版本,我们设置回滚指针为null

2.2、undo 日志

这里不细讲,但是有一件事情得说清楚, MySQL 将来是以服务进程的方式,在内存中运行。我们之前所讲的所有机制:索引,事务,隔离性,日志等,都是在内存中完成的,即在 MySQL 内部的相关缓冲区中,保存相关数据,完成各种判断操作。然后在合适的时候,将相关数据刷新到磁盘当中的。
所以,我们这里理解undo log简单理解成,就是 MySQL 中的一段内存缓冲区,用来保存日志数据的就行。

2.3、模拟 MVCC

  • 现在有一个事务10(仅仅为了好区分),对student表中记录进行修改(update):将name(张三)改成name(李四)。
  • 事务10,因为要修改,所以要先给该记录加行锁
  • 修改前,现将改行记录拷贝到undo log中,所以,undo log中就有了一行副本数据。(原理就是写时拷贝)
  • 所以现在 MySQL 中有两行同样的记录。现在修改原始记录中的name,改成 '李四'。并且修改原始记录的隐藏字段 DB_TRX_ID 为当前 事务10 的ID, 我们默认从 10 开始,之后递增。而原始记录的回滚指针 DB_ROLL_PTR 列,里面写入undo log中副本数据的地址,从而指向副本记录,既表示我的上一个版本就是它。
  • 事务10提交,释放锁

备注:此时,最新的记录是’李四‘那条记录。

  • 现在又有一个事务11,对student表中记录进行修改(update):将age(28)改成age(38)。
  • 事务11,因为也要修改,所以要先给该记录加行锁。(该记录是那条?)
  • 修改前,现将改行记录拷贝到undo log中,所以,undo log中就又有了一行副本数据。此时,新的副本,我们采用头插方式,插入undo log。
  • 现在修改原始记录中的age,改成 38。并且修改原始记录的隐藏字段 DB_TRX_ID 为当前 事务11 的ID。而原始记录的回滚指针 DB_ROLL_PTR 列,里面写入undo log中副本数据的地址,从而指向副本记录,既表示我的上一个版本就是它。
  • 事务11提交,释放锁。 

这样,我们就有了一个基于链表记录的历史版本链。所谓的回滚,无非就是用历史数据,覆盖当前数据。
上面的一个一个版本,我们可以称之为一个一个的快照。 

问题:

上面是以更新(`upadte`)主讲的,如果是`delete`呢?

一样的,别忘了,删数据不是清空,而是设置flag为删除即可也可以形成版本

如果是`insert`呢?

因为`insert`是插入,也就是之前没有数据,那么`insert`也就没有历史版本。但是一般为了回滚操作,insert的数据也是要被放入undo log中,如果当前事务commit了,那么这个undo log 的历史insert记录就可以被清空了。 

  • 总结一下,也就是我们可以理解成,`update`和`delete`可以形成版本链,`insert`暂时不考虑。 

那么`select`呢?

首先,`select`不会对数据做任何修改,所以,为`select`维护多版本,没有意义。不过,此时有个问题,就是:select读取,是读取最新的版本呢?还是读取历史版本?

  • 当前读读取最新的记录,就是当前读。增删改,都叫做当前读,select也有可能当前读,比如:select lock in share mode(共享锁), select for update (这个好理解,我们后面不讨论)
  • 快照读读取历史版本(一般而言),就叫做快照读。(这个我们后面重点讨论)
  • 我们可以看到,在多个事务同时删改查的时候,都是当前读,是要加锁的。那同时有select过来,如果也要读取最新版(当前读),那么也就需要加锁,这就是串行化。
  • 如果是快照读,读取历史版本的话,是不受加锁限制的。也就是可以并行执行!换言之,提高了效率,即MVCC的意义所在。 

那么,是什么决定了,select是当前读,还是快照读呢?

隔离级别! 

那为什么要有隔离级别呢?

事务都是原子的。所以,无论如何,事务总有先有后。

  • 但是经过上面的操作我们发现,事务从begin->CURD->commit,是有一个阶段的。也就是事务有执行前,执行中,执行后的阶段。但,不管怎么启动多个事务,总是有先有后的。
  • 那么多个事务在执行中,CURD操作是会交织在一起的。那么,为了保证事务的“有先有后”,是不是应该让不同的事务看到它该看到的内容,这就是所谓的隔离性与隔离级别要解决的问题。

先来的事务,应不应该看到后来的事务所做的修改呢? 

2.4、Read View

  • Read View 就是事务进行 快照读 操作的时候生产的 读视图 (Read View),在该事务执行的快照读的那一刻,会生成数据库系统当前的一个快照,记录并维护系统当前活跃事务的ID(当每个事务开启时,都会被分配一个ID, 这个ID是递增的,所以最新的事务,ID值越大)
  • Read View 在 MySQL 源码中,就是一个类本质是用来进行可见性判断的。 即当我们某个事务执行快照读的时候,对该记录创建一个 Read View 读视图,把它比作条件,用来判断当前事务能够看到哪个版本的数据,既可能是当前最新的数据,也有可能是该行记录的 undo log 里面的某个版本的数据。 

下面是 ReadView 结构,但为了减少uu们负担,我们简化一下

class ReadView 
{
    // 省略...
private:
    /** 高水位,大于等于这个ID的事务均不可见*/
    trx_id_t m_low_limit_id
    /** 低水位:小于这个ID的事务均可见 */
    trx_id_t m_up_limit_id;
 
    /** 创建该 Read View 的事务ID*/
    trx_id_t m_creator_trx_id;
 
    /** 创建视图时的活跃事务id列表*/
    ids_t m_ids;
 
    /** 配合purge,标识该视图不需要小于m_low_limit_no的UNDO LOG,
    * 如果其他视图也不需要,则可以删除小于m_low_limit_no的UNDO LOG*/
    trx_id_t m_low_limit_no;
 
    /** 标记视图是否被关闭*/
    bool m_closed;
    // 省略...
};

m_ids;             //  一张列表,用来维护Read View生成时刻,系统正活跃的事务ID
up_limit_id;     //  记录m_ids列表中事务ID最小的ID(没有写错)
low_limit_id;    //  ReadView生成时刻系统尚未分配的下一个事务ID,也就是目前已出现过的事务ID的最大值+1(也没有写错)
creator_trx_id   //  创建该ReadView的事务ID

我们在实际读取数据版本链的时候,是能读取到每一个版本对应的事务ID的,即:当前记录的
DB_TRX_ID
那么,我们现在手里面有的东西就有,当前快照读的 ReadView 和 版本链中的某一个记录的
DB_TRX_ID
所以现在的问题就是,当前快照读,应不应该读到当前版本记录。一张图,解决所有问题!

对应源码策略:

如果查到不应该看到当前版本,接下来就是遍历下一个版本,直到符合条件,即可以看到。上面的
readview 是当你进行select的时候,会自动形成。

2.5、整体流程

假设当前有条记录:

nameageDB_TRX_ID(创建该记录的事
务ID)
DB_ROW_ID(隐式
主键)
DB_ROLL_PTR(回滚
指针)
张三28null1null

事务操作:

事务1 [id=1]事务2 [id=2]事务3 [id=3]事务4 [id=4]
事务开始事务开始事务开始事务开始
.........修改且已提交
进行中快照读进行中
.........

事务4:修改name(张三) 变成name(李四)

当 事务2 对某行数据执行了 快照读 ,数据库为该行数据生成一个 Read View 读视图

//事务2的 Read View
m_ids;           // 1,3
up_limit_id;     // 1
low_limit_id;    // 4 + 1 = 5,原因:ReadView生成时刻,系统尚未分配的下一个事务ID
creator_trx_id   // 2

 此时版本链是:

只有事务4修改过该行记录,并在事务2执行快照读前,就提交了事务。

我们的事务2在快照读该行记录的时候,就会拿该行记录的 DB_TRX_ID 去跟up_limit_id,low_limit_id和活跃事务ID列表(trx_list) 进行比较判断当前事务2能看到该记录的版本。 

// 事务2的 Read View
m_ids;           // 1,3
up_limit_id;     // 1
low_limit_id;    // 4 + 1 = 5,原因:ReadView生成时刻,系统尚未分配的下一个事务ID
creator_trx_id   // 2
// 事务4提交的记录对应的事务ID
DB_TRX_ID=4
// 比较步骤
DB_TRX_ID(4)< up_limit_id(1) ?  不小于,下一步
DB_TRX_ID(4)>= low_limit_id(5) ? 不大于,下一步
m_ids.contains(DB_TRX_ID) ? 不包含,说明,事务4不在当前的活跃事务中。
// 结论
故,事务4的更改,应该看到。
所以事务2能读到的最新数据记录是事务4所提交的版本,而事务4提交的版本也是全局角度上最新的版本

3、RR 与 RC的本质区别

3.1、当前读和快照读在RR级别下的区别

  • select * from user lock in share mode ,以加共享锁方式进行读取,对应的就是当前读

测试表:

-- 设置隔离级别为可重复读
set global transaction isolation level repeatable read;

-- 查看当前会话隔离级别
select @@tx_isolation;
+----------------+
| @@tx_isolation |
+----------------+
| SERIALIZABLE   |
+----------------+
-- 需重启终端才能生效,ctrl \ 关闭mysql,再手动登录mysql即可


select @@tx_isolation;
+-----------------+
| @@tx_isolation  |
+-----------------+
| REPEATABLE-READ |
+-----------------+

-- 创建表
create table user(
    id int primary key,
    age int,
    name varchar(30) 
);

-- 插入数据
insert into user values(1,18,'黄蓉');

测试用例1-表1: 

事务A操作事务A描
事务B描述事务B操作
begin开启事务开启事务begin
select * from
user
快照读
(无影响)
查询
快照读查询select * from user
update user set
age=18 where id=1;
更新
age=18
--
commit提交事务--
select 快照读 ,没有读到
age=18
select * from user
select lock in share
mode当前读 , 读到age=18
select * from user
lock in share mode

测试用例2-表2:

事务A操作事务A描
事务B描述事务B操作
begin开启事务开启事务begin
select * from
user
快照读,
查到
age=18
--
update user set
age=28 where id=1;
更新
age=28
--
commit提交事务--
select 快照读 age=28select * from user
select lock in share
mode当前读 age=28
select * from user
lock in share mode

用例1与用例2:

唯一区别仅仅是 表1 的事务B在事务A修改age前 快照读 过一次age数据而 表2 的事务B在事务A修改age前没有进行过快照读。

结论:

  • 事务中快照读的结果是非常依赖该事务首次出现快照读的地方,即某个事务中首次出现快照读,决定该事务后续快照读结果的能力
  • delete同样如此

3.2、RR 与 RC的本质区别

  • 正是Read View生成时机的不同,从而造成RC,RR级别下快照读的结果的不同
  • 在RR级别下的某个事务的对某条记录的第一次快照读会创建一个快照及Read View, 将当前系统活跃的其他事务记录起来
  • 此后在调用快照读的时候,还是使用的是同一个Read View,所以只要当前事务在其他事务提交更新之前使用过快照读,那么之后的快照读使用的都是同一个Read View,所以对之后的修改不可见;
  • RR级别下,快照读生成Read View时,Read View会记录此时所有其他活动事务的快照,这些事务的修改对于当前事务都是不可见的。而早于Read View创建的事务所做的修改均是可见
  • 而在RC级别下的,事务中,每次快照读都会新生成一个快照和Read View, 这就是我们在RC级别下的事务中可以看到别的事务提交的更新的原因
  • 总之在RC隔离级别下,是每个快照读都会生成并获取最新的Read View;而在RR隔离级别下,则是同一个事务中的第一个快照读才会创建Read View, 之后的快照读获取的都是同一个Read View。
  • 正是RC每次快照读,都会形成Read View,所以,RC才会有不可重复读问题
评论 64
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小林熬夜学编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值