HDU 1087 Super Jumping! Jumping! Jumping!(DP,上升子序列)

SuperJumping游戏DP解法
本文介绍了一款名为SuperJumping的棋盘游戏,并详细解析了其背后的算法原理。通过动态规划方法解决了游戏中如何获得最大分数的问题,给出具体实现代码。

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=1087

Super Jumping! Jumping! Jumping!

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 32391    Accepted Submission(s): 14601


Problem Description
Nowadays, a kind of chess game called “Super Jumping! Jumping! Jumping!” is very popular in HDU. Maybe you are a good boy, and know little about this game, so I introduce it to you now.



The game can be played by two or more than two players. It consists of a chessboard(棋盘)and some chessmen(棋子), and all chessmen are marked by a positive integer or “start” or “end”. The player starts from start-point and must jumps into end-point finally. In the course of jumping, the player will visit the chessmen in the path, but everyone must jumps from one chessman to another absolutely bigger (you can assume start-point is a minimum and end-point is a maximum.). And all players cannot go backwards. One jumping can go from a chessman to next, also can go across many chessmen, and even you can straightly get to end-point from start-point. Of course you get zero point in this situation. A player is a winner if and only if he can get a bigger score according to his jumping solution. Note that your score comes from the sum of value on the chessmen in you jumping path.
Your task is to output the maximum value according to the given chessmen list.
 

Input
Input contains multiple test cases. Each test case is described in a line as follow:
N value_1 value_2 …value_N
It is guarantied that N is not more than 1000 and all value_i are in the range of 32-int.
A test case starting with 0 terminates the input and this test case is not to be processed.
 

Output
For each case, print the maximum according to rules, and one line one case.
 

Sample Input
  
3 1 3 2 4 1 2 3 4 4 3 3 2 1 0
 

Sample Output
  
4 10 3
 

题意:给你一串数,从起点(不在这N个点内)到终点(不在N个点内),点数 的上升路径。起点保证是最小的数,终点保证是最大的数。就是保证一定可以从起点去任何位置,从任何位置到终点。

解题思路:思考相似的类型,最长上升子序列。设置一个dp数组,dp[i]代表以a[i]为结尾的上升子序列时,能够得到的最高分数。

我们可以考虑,以a[i]为结尾的子序列

①只包含a[i]的子序列

②在满足j < i 并且a[j] < a[i]的以a[j]为结尾的上升子序列,追加上a[i]后的子序列

我们就可以很容易得出递推式,dp[i] = max{ a[i] , dp[j] + a[i] | j < i 且 a[j] < a[i] };

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<set>
#include<cmath>
#include<vector>
#include<map>
using namespace std;
typedef long long ll;
const int maxn = 1005;
int a[maxn];
int dp[maxn];
int main()
{
    int n;
    while(~scanf("%d",&n),n)
    {
        for(int i = 0 ; i < n ; i ++)
            scanf("%d",&a[i]);
        int mmax  = 0;
        for(int i = 0 ; i < n ; i ++)
        {
            dp[i] = a[i] ;
            for(int j = 0 ; j < i ; j ++)
           {
               if(a[i]>a[j])
                dp[i] = max(dp[i],dp[j]+a[i]);
           }
           mmax = max(dp[i],mmax);
        }
        cout << mmax <<endl;
    }

    return 0;
}



提供了基于BP(Back Propagation)神经网络结合PID(比例-积分-微分)控制策略的Simulink仿真模型。该模型旨在实现对杨艺所著论文《基于S函数的BP神经网络PID控制器及Simulink仿真》中的理论进行实践验证。在Matlab 2016b环境下开发,经过测试,确保能够正常运行,适合学习和研究神经网络在控制系统中的应用。 特点 集成BP神经网络:模型中集成了BP神经网络用于提升PID控制器的性能,使之能更好地适应复杂控制环境。 PID控制优化:利用神经网络的自学习能力,对传统的PID控制算法进行了智能调整,提高控制精度和稳定性。 S函数应用:展示了如何在Simulink中通过S函数嵌入MATLAB代码,实现BP神经网络的定制化逻辑。 兼容性说明:虽然开发于Matlab 2016b,但理论上兼容后续版本,可能会需要调整少量配置以适配不同版本的Matlab。 使用指南 环境要求:确保你的电脑上安装有Matlab 2016b或更高版本。 模型加载: 下载本仓库到本地。 在Matlab中打开.slx文件。 运行仿真: 调整模型参数前,请先熟悉各模块功能和输入输出设置。 运行整个模型,观察控制效果。 参数调整: 用户可以自由调节神经网络的层数、节点数以及PID控制器的参数,探索不同的控制性能。 学习和修改: 通过阅读模型中的注释和查阅相关文献,加深对BP神经网络与PID控制结合的理解。 如需修改S函数内的MATLAB代码,建议有一定的MATLAB编程基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值