【POJ】2061 - Subsequence(STL & 二分)

该博客主要解析了POJ 2061题目的解法,内容涉及STL和二分查找技术。博主通过解释题意,给出了输入输出格式,并提供了样例及相应的代码实现,该代码利用动态规划和二分查找找到满足条件的最短子序列长度。

点击打开题目

Subsequence
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 11797 Accepted: 4949

Description

A sequence of N positive integers (10 < N < 100 000), each of them less than or equal 10000, and a positive integer S (S < 100 000 000) are given. Write a program to find the minimal length of the subsequence of consecutive elements of the sequence, the sum of which is greater than or equal to S.

Input

The first line is the number of test cases. For each test case the program has to read the numbers N and S, separated by an interval, from the first line. The numbers of the sequence are given in the second line of the test case, separated by intervals. The input will finish with the end of file.

Output

For each the case the program has to print the result on separate line of the output file.if no answer, print 0.

Sample Input

2
10 15
5 1 3 5 10 7 4 9 2 8
5 11
1 2 3 4 5

Sample Output

2
3

Source



题意:给出n个数和一个S,求这 n 个数的子序列大于等于 S 的最短序列长度是多少。

题解:求出当 i 为之前面所有数的和。然后从最后一个数开始,找出第一个满足条件的数的位置,求之间的距离更新 ans 值,最后得出最短的 ans 。

代码如下:

#include <cstdio>
#include <algorithm>
#define MAX 100000
using namespace std;
int main()
{
	int u;
	int sum[MAX+22];
	int ans;
	int n,S;
	scanf ("%d",&u);
	while (u--)
	{
		scanf ("%d %d",&n,&S);
		scanf ("%d",&sum[0]);
		for (int i = 1 ; i < n ; i++)
		{
			scanf ("%d",&sum[i]);
			sum[i] += sum[i-1];
		}
		if (sum[n-1] < S)
		{
			printf ("0\n");
			continue;
		}
		ans = n;
		int pos;		//存放序列开始的位置 
		for (int i = n - 1 ; i >= 0 ; i--)		//从最后面开始,把其当作序列尾 
		{
			if (sum[i] < S)
				break;
			pos = upper_bound(sum , sum + n , sum[i] - S) - sum;
			ans = min(ans , i - pos + 1);
		}
		printf ("%d\n",ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值