6.3 单元类型
数据集由一个或多个单元组成,图6.6和6.7列出了VTK支持的线性和非线性类型的单元。一系列有序的点按指定类型连接所定义的结构就是单元(Cell),单元是可视化系统的基础。这些点的连接顺序通常也称为顶点列表(Connectivity List);所指定的类型定义了单元的拓扑结构,而点的坐标定义了单元的几何结构。
比如,图6.8是类型为六面体(Hexahedron)的单元,顶点列表(由点的索引号表示,即8-10-1-6-21-22-5-7,每个点通过索引号可在顶点列表中检索到该点的实际坐标值)定义了六面体单元的拓扑结构,从图中可以看出,索引为8和10的点连接就构成了六面体十二条边中的其中一条,而8-10-1-6这四个点连接就构成了六面体其中的一个面。在这个示例中,可以看出单元是由单元的类型(如六面体)和构成单元的顶点列表两部分构成。
通常我们用数学符号Ci来表示单元,换言之,单元就是一个有顺序的点集:Ci = {p1, p2,…, pn},其中pi∈P,P就是该有序的点集。单元的类型决定了点集里点的顺序,或者说单元的拓扑;而定义单元的点的个数就是该单元的大小(Size)。
单元的拓扑维度除了三维(图6.8)之外,还可以是零维、一维、二维等,如零维的顶点(Vertex)、一维的线(Line)以及二维的三角形(Triangle)。单元可以是基本类型或者基本类型的组合,基本类型是指不可再分的单元,组合类型是由基本类型组合而成。比如,三角形条带(Triangle Strip)是由多个三角形所组成,即三角形条带可以分解成多个三角形,而三角形是二维的基本单元类型。所以,对于单元的类型而言