Caffe学习:使用pycaffe定义网络

本文介绍了如何使用PyCaffe来定义和构建LeNet网络,包括引入必要的库,定义DataLayer、ConvolutionLayer、PoolingLayer、InnerProductLayer、ReLULayer和SoftmaxWithLossLayer,并提供了构建MNIST网络的具体步骤,最后展示了保存的网络定义文件内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用pycaffe定义网络:

  • 参考链接:Learning LeNet

  • 引入库:

    import caffe
    
    from caffe import layers as L
    from caffe import params as P
  • 使用pycaffe定义Net:

    n = caffe.NetSpec()
  • 定义DataLayer:

    n.data, n.label = L.Data(batch_size=batch_size,
                             backend=P.Data.LMDB, source=lmdb,
                             transform_param=dict(scale=1. / 255), ntop=2)
    
    # 效果如下:
    
    layer {
      name: "data"
      type: "Data"
      top: "data"
      top: "label"
      transform_param {
        scale: 0.00392156862745
      }
      data_param {
        source: "mnist/mnist_train_lmdb"
        batch_size: 64
        backend: LMDB
      }
    }
    
  • 定义ConvolutionLayer:

    n.conv1 = L.Convolution(n.data, kernel_size=5,
                            num_output=20, weight_filler=dict(type='xavier'))
    
    # 效果如下:
    
    layer {
      name: "conv1"
      type: "Convolution"
      bottom: "data"
      top: "conv1"
      convolution_param {
        num_output: 20
        kernel_size: 5
        weight_filler {
          type: "xavier"
        }
      }
    }
  • 定义PoolingLayer:

    n.pool1 = L.Pooling(n.conv1, kernel_size=2,
                        stride=2, pool=P.Pooling.MAX)
    
    # 效果如下:
    
    layer {
      name: "pool1"
      type: "Pooling"
      bottom: "conv1"
      top: "pool1"
      pooling_param {
        pool: MAX
        kernel_size: 2
        stride: 2
      }
    }
  • 定义InnerProductLayer:

    n.ip1 = L.InnerProduct(n.pool2, num_output=500,
                           weight_filler=dict(type='xavier'))
    
    # 效果如下:
    
    layer {
      name: "ip1"
      type: "InnerProduct"
      bottom: "pool2"
      top: "ip1"
      inner_product_param {
        num_output: 500
        weight_filler {
          type: "xavier"
        }
      }
    }                   
  • 定义ReLULayer:

    n.relu1 = L.ReLU(n.ip1, in_place=True)
    
    # 效果如下:
    
    layer {
      name: "relu1"
      type: "ReLU"
      bottom: "ip1"
      top: "ip1"
    }
  • 定义SoftmaxWithLossLayer:

    n.loss = L.SoftmaxWithLoss(n.ip2, n.label)
    
    # 效果如下:
    
    layer {
      name: "loss"
      type: "SoftmaxWithLoss"
      bottom: "ip2"
      bottom: "label"
      top: "loss"
    }
  • 定义minst网络:

    import caffe
    
    from caffe import layers as L
    from caffe import params as P
    
    def lenet(lmdb, batch_size):
        n = caffe.NetSpec()
        n.data, n.label = L.Data(batch_size=batch_size,
                                 backend=P.Data.LMDB, source=lmdb,
                                 transform_param=dict(scale=1. / 255), ntop=2)
        n.conv1 = L.Convolution(n.data, kernel_size=5,
                                num_output=20, weight_filler=dict(type='xavier'))
        n.pool1 = L.Pooling(n.conv1, kernel_size=2,
                            stride=2, pool=P.Pooling.MAX)
        n.conv2 = L.Convolution(n.pool1, kernel_size=5,
                                num_output=50, weight_filler=dict(type='xavier'))
        n.pool2 = L.Pooling(n.conv2, kernel_size=2,
                            stride=2, pool=P.Pooling.MAX)
        n.ip1 = L.InnerProduct(n.pool2, num_output=500,
                               weight_filler=dict(type='xavier'))
        n.relu1 = L.ReLU(n.ip1, in_place=True)
        n.ip2 = L.InnerProduct(n.relu1, num_output=10,
                               weight_filler=dict(type='xavier'))
        n.loss = L.SoftmaxWithLoss(n.ip2, n.label)
    
        return n.to_proto()
  • 保存网络定义:

    with open('mnist/lenet_auto_train.prototxt', 'w') as f:
        f.write(str(lenet('mnist/mnist_train_lmdb', 64)))
    with open('mnist/lenet_auto_test.prototxt', 'w') as f:
        f.write(str(lenet('mnist/mnist_test_lmdb', 100)))
  • lenet_auto_train.prototxt文件如下:(lenet_auto_test.prototxt文件类似):

    layer {
      name: "data"
      type: "Data"
      top: "data"
      top: "label"
      transform_param {
        scale: 0.00392156862745
      }
      data_param {
        source: "mnist/mnist_train_lmdb"
        batch_size: 64
        backend: LMDB
      }
    }
    layer {
      name: "conv1"
      type: "Convolution"
      bottom: "data"
      top: "conv1"
      convolution_param {
        num_output: 20
        kernel_size: 5
        weight_filler {
          type: "xavier"
        }
      }
    }
    layer {
      name: "pool1"
      type: "Pooling"
      bottom: "conv1"
      top: "pool1"
      pooling_param {
        pool: MAX
        kernel_size: 2
        stride: 2
      }
    }
    layer {
      name: "conv2"
      type: "Convolution"
      bottom: "pool1"
      top: "conv2"
      convolution_param {
        num_output: 50
        kernel_size: 5
        weight_filler {
          type: "xavier"
        }
      }
    }
    layer {
      name: "pool2"
      type: "Pooling"
      bottom: "conv2"
      top: "pool2"
      pooling_param {
        pool: MAX
        kernel_size: 2
        stride: 2
      }
    }
    layer {
      name: "ip1"
      type: "InnerProduct"
      bottom: "pool2"
      top: "ip1"
      inner_product_param {
        num_output: 500
        weight_filler {
          type: "xavier"
        }
      }
    }
    layer {
      name: "relu1"
      type: "ReLU"
      bottom: "ip1"
      top: "ip1"
    }
    layer {
      name: "ip2"
      type: "InnerProduct"
      bottom: "ip1"
      top: "ip2"
      inner_product_param {
        num_output: 10
        weight_filler {
          type: "xavier"
        }
      }
    }
    layer {
      name: "loss"
      type: "SoftmaxWithLoss"
      bottom: "ip2"
      bottom: "label"
      top: "loss"
    }
    

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值