Given two words (start and end), and a dictionary, find the length of shortest transformation sequence from start to end, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the dictionary
For example,
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog"
,
return its length 5
.
Note:
- Return 0 if there is no such transformation sequence.
- All words have the same length.
- All words contain only lowercase alphabetic characters.
queue记录转变过程,对于每个存在于dict中的字符,进行替换。详细见code
Java
public class Solution {
public int ladderLength(String start, String end, Set<String> dict) {
if(start.length()!=end.length()) return 0;
if(start.isEmpty() || end.isEmpty()) return 0;
Queue<String> path = new LinkedList<>();
path.add(start);
int level = 1;
int count = 1;
dict.remove(start);
while(dict.size()>0 &&!path.isEmpty()){
String curword = path.peek();
path.poll();
count--;
for(int i=0;i<curword.length();i++){
StringBuffer tmp = new StringBuffer(curword);
for(char j='a';j<='z';j++){
if(tmp.charAt(i)==j) continue;
tmp.replace(i, i+1, ""+j);
if(tmp.toString().equals(end)) return level+1;
if(dict.contains(tmp.toString())) path.add(tmp.toString());
dict.remove(tmp.toString());
}
}
if(count==0){
count = path.size();
level++;
}
}
return 0;
}
}
c++
int ladderLength(string start, string end, unordered_set<string> &dict) {
if(start.size() != end.size()) return 0;
if(start.empty() || end.empty()) return 0;
queue<string> path;
path.push(start);
int level = 1;
int count = 1;
dict.erase(start);
while(dict.size()>0 && !path.empty()){
string curword = path.front();
path.pop();
count --;
for(int i=0; i<curword.size();i++){
string tmp = curword;
for(char j='a';j<='z';j++){
if(tmp[i]==j) continue;
tmp[i] =j;
if(tmp == end) return level+1;
if(dict.find(tmp)!=dict.end()) path.push(tmp);
dict.erase(tmp);
}
}
if(count ==0){
count = path.size();
level++;
}
}
return 0;
}