There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
Analysis
O(n)的解法比较直观,直接merge两个数组,然后求中间值。而对于O(log(m+n))显然是用二分搜索了, 相当于“Kth element in 2 sorted array”的变形。如果(m+n)为奇数,那么找到“(m+n)/2+1 th element in 2 sorted array”即可。如果(m+n)为偶数,需要找到(m+n)/2 th 及(m+n)/2+1 th,然后求平均。
而对于“Kth element in 2 sorted array”, 如下图,两个中位数 A[m/2] 和 B[n/2], 可以将数组划分为四个部分。而丢弃哪一个部分取决于两个条件:1, (m/2 + n/2)?k;2,A[m/2] ? B[n/2];
If (m/2+n/2+1) > k &&
a
m/2
>
b
n
/2
, drop
Section
2
If (m/2+n/2+1) > k && a
m/2
<
b
n
/2
, drop
Section
4
If
(m/2+n/2+1)
<
k && a
m/2
>
b
n
/2 ,
drop
Section 3
If (m/2+n/2+1)
<
k && a
m/2
<
b
n
/2
,
drop
Section
1
简单的说,就是或者丢弃最大中位数的右区间,或者丢弃最小中位数的左区间。
java
public double findMedianSortedArrays(int A[], int B[]) {
int n = A.length;
int m = B.length;
if((n+m)%2 == 0)
return (GetMedian(A, n, B, m, (n+m)/2)+ GetMedian(A, n, B, m, (m+n)/2+1))/2.0;
else
return GetMedian(A, n, B, m, (m+n)/2+1);
}
public int GetMedian(int a[], int n, int b[],int m, int k){
if(n<=0) return b[k-1];
if(m<=0) return a[k-1];
if(k<=1) return Math.min(a[0], b[0]);
if(a[n/2]>=b[m/2]){
if((n/2+m/2+1)>=k)
return GetMedian(a, n/2, b, m, k);
else
return GetMedian(a, n, Arrays.copyOfRange(b, m/2+1, m), m-m/2-1, k-m/2-1);
}else {
if((n/2+1+m/2)>=k)
return GetMedian(a, n, b,m/2, k);
else
return GetMedian(Arrays.copyOfRange(a, n/2+1, n), n-n/2-1, b, m, k-n/2-1);
}
}
c++
double findMedianSortedArrays(int A[], int m, int B[], int n) {
if((n+m)%2 == 0)
return (GetMedian(A, m,B,n,(m+n)/2)+GetMedian(A,m,B,n,(m+n)/2+1))/2.0;
else
{return GetMedian(A, m, B, n, (m+n)/2+1);}
}
int GetMedian(int a[], int n, int b[], int m, int k)
{
if(n<=0) return b[k-1];
if(m<=0) return a[k-1];
if(k<=1) return min(a[0], b[0]);
if(b[m/2] >= a[n/2]){
if((n/2+m/2+1)>=k)
return GetMedian(a,n,b,m/2,k);
else
return GetMedian(a+n/2+1,n-(n/2+1),b,m,k-(n/2+1));
}
else{
if((n/2+m/2+1)>=k)
return GetMedian(a,n/2,b,m,k);
else
return GetMedian(a,n,b+(m/2+1),m-(m/2+1),k-(m/2+1));
}
}