Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Analysis:
DP problem,
Transaction function: a[n][i] = a[n][i]+min(a[n-1][i], a[n-1][i-1]).
Note that in this problem, "adjacent" of a[i][j] means a[i-1][j] and a[i-1][j-1], if available(not out of bound), while
a[i-1][j+1] is not "adjacent" element.
If we do this from up to down, it is complicated. While from down to up, we could use only one array to scan every row to get result
Java
public int minimumTotal(List<List<Integer>> triangle) {
int n = triangle.size();
if(n==0) return 0;
int m = triangle.get(n-1).size();
int [] result = new int[m];
for(int i=n-1;i>=0;i--){
for(int j=0;j<triangle.get(i).size();j++){
if(i==n-1){
result[j] = triangle.get(i).get(j);
continue;
}
result[j] = Math.min(result[j], result[j+1])+triangle.get(i).get(j);
}
}
return result[0];
}c++
int minimumTotal(vector<vector<int> > &triangle) {
int row = triangle.size();
if(row == 0) return 0;
vector<int> minV(triangle[row-1].size());
for(int i = row-1; i>=0;i--){
int col = triangle[i].size();
for(int j=0; j<col;j++){
if(i==row-1){
minV[j] = triangle[i][j];
continue;
}
minV[j] = min(minV[j],minV[j+1])+triangle[i][j];
}
}
return minV[0];
}

本文介绍了一种求解三角形结构中从顶点到底边的最小路径和问题的算法。通过动态规划的方法,从下往上逐层计算每个节点到顶点的最小路径和,最终得到整个三角形的最小路径总和。
5127

被折叠的 条评论
为什么被折叠?



